Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal

wheatgenome

Webinar: PANOMICS meets Germplasm – understanding and exploiting intraspecific crop plant variation

PANOMICS meets Germplasm – understanding and exploiting intraspecific crop plant variation
On 16 June 2022, the IWGSC will organize a webinar entitled "PANOMICS meets Germplasm – understanding and exploiting intraspecific crop plant variation" presented by Wolfram Weckwerth (University of Vienna, Austria)

Time

11:00am EDT, 5:00pm CEST, 4:00 pm GMT

Register here

Presenter

Wolfram Weckwerth, University of Vienna, Austria

Outline

Genotyping-by-sequencing has enabled approaches for genomic selection to improve yield, stress resistance and nutritional value. More and more resource studies are emerging providing 1000 and more genotypes and millions of SNPs for one species covering a hitherto inaccessible intraspecific genetic variation. The larger the databases are growing, the better statistical approaches for genomic selection will be available. However, there are clear limitations on the statistical but also on the biological part. Intraspecific genetic variation is able to explain a high proportion of the phenotypes, but a large part of phenotypic plasticity also stems from environmentally driven transcriptional, post-transcriptional, translational, post-translational, epigenetic and metabolic regulation. Moreover, regulation of the same gene can have different phenotypic outputs in different environments.

Consequently, to explain and understand environment-dependent phenotypic plasticity based on the available genotype variation we have to integrate the analysis of further molecular levels reflecting the complete information flow from the gene to metabolism to phenotype which we call a PANOMICS platform integrating genomics, transcriptomics, proteomics, metabolomics and phenotyping.

Recently, I coined the term of “Green Systems Biology”, the need to apply these systems biology technologies to environmental research, ecosystem analysis and biotechnology. In the framework of Green Systems Biology we propose three fundamental pillars for future breeding strategies:

  • (i) combining genome selection with environment-dependent PANOMICS analysis and deep learning to improve prediction accuracy for marker-dependent trait performance;
  • (ii) PANOMICS resolution at subtissue, cellular and subcellular level provides information about fundamental functions of selected markers;
  • (iii) combining PANOMICS with genome editing and speed breeding tools.

Applications will be presented for metabolomics and proteomics tissue – and cell-specific analysis of the grain filling process in wheat seeds at different developmental stages.

References