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Wheat production faces many challenges

« Demand for yield is increasing

 Reduction of intrants
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Varietal improvement relies on genetic variance

Selection of best lines
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Genetic diversity results from
- Mutation

- Reshuffling of alleles through meiotic recombination
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Meiotic recombination

. : Homologous chromosomes
Meiosis = production of gametes

meiocyte Homologous chromosomes

Crossmg over (CO)

1) Metaphase | e @@
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2) First division . .
|

3) Second division

4 gametes
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Recombination allows to cumulate desirable alleles in new varieties

If genes are on the same chromosome

W
HH

Desirable gamete
p=r/2

Recombined
f=r

Not recombined
f=1-r




Recombination landsca PE€ (= repartition of CO along the genome)

Variability along the genome?

Recombination landscape (bread wheat)
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Genes count
What drives recombination landscape ?
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Recombination landscape

Recombination landscape = many mecanisms (interference, DNA compaction...)

One approach to caracterize the determinism of rec. landscape = variability between populations

Marand et al. 2019 (The Plant Cell): Schwarzkopf et al. 2020 (BMC genomics):
Comparison of landscapes of two rice sub-species Comparison of landscapes of ten cacao-tree populations

japonica - fine

80% of recombination hotspots are sub-species specific

55% of hotspots are population specific




Variability of recombination landscape between populations ?

Gardiner et al. 2019 (Genome Biology):

« Comparison of recombination landscape in
13 NAM families (1 parent x 13 other parents)

* More similar parents have more similar
recombination landscapes

In bread wheat ?

Darrier et al. 2017 (Genetics):
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* Recombination landscapes are ~ similar
« But analysed region <4 Mb

This presentation:

Genome-wide variability of recombination landscape between diverging populations of bread wheat
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Methods
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Estimate recombination landscape

Method 1: Count recombination within families: « Meiotic landscape »
Ex: Chinese Spring * Renan population (Rimbert et al. 2018, PloS one)
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nb recombined gametes
f( )

Recombination rate ¢ =
nb gametes

Drawbacks:
Small number of progeny

« Specific of parents
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Estimate recombination landscape

Method 2: linkage disequilibrium of diversity panel: « LD-based landscape »

LD patterns

chromosome

SNP on chromosome
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Estimate recombination landscape

Method 2: linkage disequilibrium of diversity panels: « LD-based landscape »

LD-based recombination landscape
LD patterns

e P R
: e 0.075
osi Li et Stephens model
1.00 . (2003, Genetics)
0.75 >
0.50 _ - .\
0.25 p=p=K*c 2 0.05
n 0.00 > ® 49
) (a ® 5
® 49 with K = f(Ne)
®@ 5 [ziimumue welok
chromosome} Rl ) 0.025
SNP on chro»mosworhe - H@W
0

496 498 500
physical position (Mb)



Estimate recombination landscape

Method 2: linkage disequilibrium of diversity panels: « LD-based landscape »

LD patterns

R2

lé‘;g Advantages compared to meiotic method:
s « Based on many meiosis
0.00 « Many polymorphic SNP

N . .

o 1 e  Representative of the population
9 |

chromosome | i1 i _ il

— Better suited to compare recombination landscapes
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Li et Stephens model (2003)
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p.13
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4 different populations of bread wheat

371 bread wheat landraces sampled worldwide (Balfourier et al. 2019, Science Advances)
130k SNP of TABW410k (Kitt et al. 2021, Zenodo)

— hierarchical clustering K = 4
Populations Differenciation of populations
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» Do the recombination profiles of these 4 populations vary ?
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Estimate recombination landscapes

Window
|
For each population (WE, EE, WA, EA): [ \
SNP, SNP,
« Split the genome into ~ 600 windows of ~ 2 cM length (using CsRe) | | | | | |
 Run PHASE (Li et Stephens 2003, Genetics) l
= to obtain joint posterior distributions of p and A A

p : Background recombination rate

A : Local inflation of recombination
p.15



Results

p. 16



Validation of LD-based recombination landscapes
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LD-based
0.6
0.4 E
Af“«\ m
o Meiotic . R P
= 0.0
=
L3 0.2 | region
g m  — Rl
©
8° 2 00 — R2a
c -~ — C
g <04
g “ <| — R
T 0.2 > _—
] R3
x ° 0.0
& 0 200 400 600 800
physical position (Mb) 0.2
m
>
l 0.0
0 200 400 600 800
physical position (Mb)
~ _ f(nb recombined progenies )
nb progenies

p = K*C p. 17



Validation of LD-based recombination landscapes

3B chromosome Correlation all genome
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Local differences between meiotic and LD-based landscapes

* Low correlation in the 7DR3 region

«  Wild introgression in Renan population O

— Meiotic landscapes are sensitiv to
iIndividual specific variation

. 7DR3
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Validation of LD-based recombination landscapes

« Good correlation between LD-based and meiotic landscapes

« But higher resolution in LD-based landscapes

— LD-based = better suited to study and compare
fine scale variation of recombination between the 4 populations
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Comparison of fine scale variation of LD-based landscapes

LD patterns LD-based recombination landscape
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Fine scale variation of LD-based landscapes

LD patterns LD-based recombination landscape
z Li et Stephens model (2003)
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A landscape = variation of recombination « only »
— A = better suited to compare populations p. 22



Localization of high recombination rates
Highly Recombining Intervals (HRIs)

HRIs
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Features associated with HRIs

~ 9k HRIs (all populations combined)
> 70% of HRIs located in regions R1 and R3
80% of HRIs overlapped genes

— HRIs associated with open-chromatine
Consistent with litterature on rec. hotspots
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100

HRIs shared by (%)
a ~
O a

N
o

Conservation of HRIs across the 4 populations

population specific

2 populations +

3 populations +

4 populations

0.66
A

0.34
A

0.12

« Less population specific intervals

than expected

« 34% of HRIs are shared > than
expected by chance

Common mechanism driving HRIs positions
but differenciation
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Conservation of HRIs across the 4 populations
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Recombination at HRIs increased in closer populations
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For each genomic region 1AR1 ... 7DR3
and each pair of populations:

« Compute Fst

« Compute correlation of rec. inflations (A)

Variability of global recombination landscape
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Variability of global recombination landscape
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Negative slopes for most regions

Most slopes significantly < 0

— Similary of recombination landscapes
decreases with genetic differenciation

Fst effect
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Conclusion
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Recombination landscape evolved quickly in bread wheat

Genetic divergence associated with increased differenciation of LD patterns
« Among the highest resolutive recombination landscapes of bread wheat
* Very clear signal
« Results likely not biased by evolutionnary forces
« Also observed in other studies on plants:
- Bread wheat (Gardiner, 2019, Genome Biology)
- Rice (Marand et al. 2019, The Plant Cell)
- Cacao (Schwarskops et al. 2020, BMC genomics)
+ Maize (Rodgers-Melnick et al. 2015, PNAS), Poplar (Wang et al. 2016, Genetics),
Cotton (Shen et al. 2019, The Plant journal)

— Evolution of CO repartition along the genome in plants
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Discussion: Drivers of the evolution of CO repartition along the genome

— Might provide some insights about CO position determinism

How to explain such variability ?

« Environmental effects: T°C

* (Epi-)Genomic variability: DNA sequence or chromatine landscape
« Genes driving CO position (Ex: PRDM9 in few mammals)
Perspectives:

« Detect recombination hotspots

« Functionnal annotation + chromatine marks at hotspots

 GWAS in segregating families
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