Identification of the long sought-after *Ph2* gene, a step towards the control of homoeologous recombination in wheat

Heïdi Serra UMR CNRS-INSERM-UCA GReD Clermont-Ferrand, France

17th June 2021

Identification of the long sought-after Ph2 gene, a step towards the control of homoeologous recombination in wheat

P. Sourdille

J. Bartoš

U. Baumann

Relative species, a source of genetic diversity

S. pimpinellifolium

G. anomalum

Introgression relies on meiotic recombination

Mechanisms of meiotic recombination

Allopolyploid genome of bread wheat

Marcussen et al, 2014

Triticum aestivum AA BB DD

2n = 6x = 42 chromosomes

Homoeologous recombination is inhibited during meiosis

Unlocking homoeologous recombination to facilitate introgression

Control of homoeologous recombination

• One major locus: Ph1 (Pairing homoeologous 1)

- On chromosome 5BL (Riley & Chapman, 1958)
- Cloning (Griffiths et al, 2006)
 - Heterochromatic block (3B)
 - TaZIP4-B2
 - Complex of 4 CDK2-L
- Mode of action (Martin et al, 2014)
 - Promotes homologous pairing
 - Prevents homoeologous recombination
 intermediates to become crossovers

Control of homoeologous recombination

• Locus Ph2 (Pairing homoeologous 2)

Control of homoeologous recombination

Locus Ph2 (Pairing homoeologous 2)

- On chromosome 3DS (Mello-Sampayo et al, 1968)
- Two mutants:
 - Irradiation mutant *ph2a* (Sears et al, 1982)
 Terminal deletion of ~80 Mb (Sutton et al, 2003)
 - EMS mutant ph2b (Wall et al, 1971)
- Of particular interest:
 - Minimal disruption of endogenous homologous rec
 - Reinforces *ph1b*'s effect of promoting homoeologous rec
- Candidate genes: WM1 gene family, WM3, WM5, TaMSH7-3D

Southern blot, probe on 3DS

Positional cloning of *Ph2* : our strategy

Identification of ph2a deletion breakpoint

High-density SNP genotyping array (35 K SNP Affymetrix Axiom®)

Identification of ph2a deletion breakpoint

Chromosome 3D coordinates (Mb)

Exome capture of EMS induced *ph2b* mutant vs Chinese Spring reference genome:

165 single nucleotide differences within ph2a deletion region

(mainly G-A and C-T transitions)

59 SNPs within genic regions (CDS, 5' & 3' UTR, promotor regions)

- **36 exonic mutations + 1** mutation affecting **splicing junction**
 - 13 synonymous
 - 21 non-synonymous
 - 2 non-sense

Ph2 candidate genes: 1577 => 24 genes

- Breakages => mainly distal deletions
- Selection of 3D deletion lines using telomeric +
 centromeric markers => 113 deletion lines
- Characterization of the deletions using 3D-specific markers => Deletions ranged from 6.5 to 357 Mb

Production of 3D deletion lines

FISH analysis using Afa repeats

Selection of lines carrying a terminal deletion on 3DS

Ph2 locates within a 14.3-Mb region on 3DS

Ph2 locates between positions 64.9 Mb and 79.2 Mb

Ph2 candidate genes: 100 genes

Candidate genes for Ph2

TaMSH7-3D is a unique candidate for Ph2

TaMSH7-3D, a DNA mismatch repair protein

MSH7: MutS homolog 7

- Member of the DNA mismatch repair family with MSH2, MSH3 & MSH6
- Specific to plants
- Maintain genome stability by assuring DNA mismatch recognition in MMR pathway

MSH7 supresses homoeologous recombination

in tomato (Tam et al, 2011)

Mismatch Repair Pathway

TaMSH7-3D in ph2b mutant

TaMSH7-3D in ph2b mutant

Tamsh7-3D Q605* mutant

TaMSH7-3D inhibits homoeologous recombination

10 µm

TaMSH7-3D promotes homologous recombination

TaMSH7-3D is dosage sensitive

msh7-3D recapitulates the ph2 phenotype

Chiasma frequency / meiocyte

Tamsh-3D does not affect wheat fertility

MSH7-3D is expressed in anthers during meiotic prophase I

Pingault et al, 2015

Pairwise percentages of nucleotide and amino acid sequence identities

	TaMSH7-3A	TaMSH7-3B	TaMSH7-3D
TaMSH7-3A		96.32	96.32
TaMSH7-3B	97.77		97.22
TaMSH7-3D	97.77	97.96	

Minor suppressors of homoeologous recombination?

- Ph2 locates within a 14.3-Mb region ranging from 64.9 to 79.2 Mb on 3DS
- TaMSH7-3D is the only gene localised within this region that contains an EMS-derived SNP susceptible to affect protein sequence in ph2b
- An additional mutant of TaMSH7-3D recapitulates the ph2 phenotype in regards to homologous and homoeologous recombination
- Exclusion of all previously proposed candidates for Ph2 (not located in the newly refined Ph2 locus and not mutated in ph2b) except TaMSH7-3D

TaMSH7-3D, the causative gene for Ph2

Putative model

TaMSH7-3D is a key inhibitor of homoeologous recombination in wheat

Mode of action?

Putative model

TaMSH7-3D is a key inhibitor of homoeologous recombination in wheat

Mode of action?

- > Decipher the modes of action and interactions of TaZIP4-B2 and TaMSH7-3D
- Combine Tazip4-B2 and Tamsh7-3D mutations to further improve efficiency and ease of introgressions
- Investigate relative impact and combinatorial effects of TaMSH7 copies on homoeologous recombination

ARTICLE

https://doi.org/10.1038/s41467-021-21127-1

OPEN

Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination

Heïdi Serra [©] ^{1,5™}, Radim Svačina [©] ², Ute Baumann [©] ³, Ryan Whitford [©] ³, Tim Sutton [©] ^{3,4}, Jan Bartoš [©] ² & Pierre Sourdille [©] ^{1™}

Check for updates

Acknowledgements

Pierre Sourdille Isabelle Lhommet Jonathan Kitt Hélène Rimbert

Jan Bartos

Radim Svacina

Miroslava Karafiátová

Clermont

Auvergne

Ute Baumann Ryan Whitford Tim Sutton

