

Novel Design of Imputation-Enabled SNP Arrays for Dual Hybridisation of Wheat and Barley

Gabriel Keeble-Gagnère

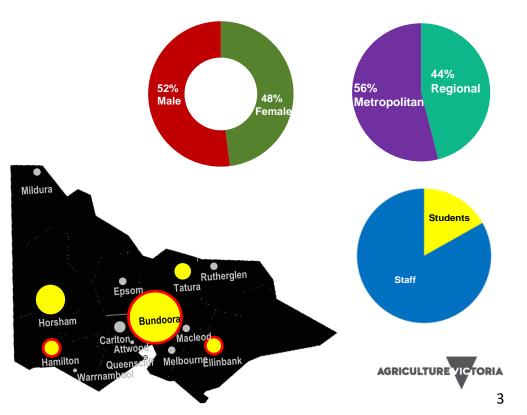
with colleagues from Agriculture Victoria and InterGrain

IWGSC/Illumina Webinar

15th April 2021

Disclaimer

The opinions expressed during this presentation are those of the speaker and may not represent the opinions of Illumina. Any uses of Illumina products described in this presentation may be uses that have not been cleared or approved by the FDA, or any other applicable regulatory body.


Agriculture Victoria Research

- Science Supporting Agriculture

Achieving step change improvements in agriculture through innovation for enduring profitability

Enhancing response and management of plant and animal pest and disease outbreaks

Enhancing the underpinning innovation ecosystem

Farsi Hindi Arabic Bengali Hungarian Italian French

Australian wheat, barley and oat breeding company

- National breeding programs
- >300,000 plots
- 63 field sites across Australia
- Staff of 55 (including 12 Breeder/Scientists)

InterGrain objectives for chip development:

- 1) Deployment in InterGrain breeding program at scale (now in third year)
- 2) Enhance global research relationships by providing a common platform for genetic research
- 3) Enable rapid translation of research outputs into breeding program

Business takes a collaborative breeding approach Open to two-way global linkages

Key contact: Hannah Robinson hrobinson@intergrain.com

Variety improvement is applied genomics

High-quality assembled reference genomes

IGH Genome Project

Article | Open Access | Published: 25 November 2020

Multiple wheat genomes reveal global variation in modern breeding

Sean Walkowiak, Liangliang Gao, [...] Curtis J. Pozniak 🖂

Nature 588, 277-283(2020) Cite this article

Article | Open Access | Published: 25 November 2020

The barley pan-genome reveals the hidden legacy of mutation breeding

Murukarthick Jayakodi, Sudharsan Padmarasu, [...] Nils Stein 🖂

Nature 588, 284-289(2020) Cite this article

Extensive genome-scale genomic resources

Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome

Fei He', Raj Pasam ®², Fan Shi², Surya Kant³, Gabriel Keeble-Gagnere², Pippa Kay², Kerrie Forrest², Allan Fritz, Pierre Hucl⁴, Krystalee Wiebe¹, Ron Knox ®³, Richard Cuthlert⁴, Curtis Pozniak ®⁴, Alina Akhunova ®¹⁴, Pietr L. Morrell⁹, John P. Davies⁴, Steve R. Webb³, German Spangenberg¹⁴, Ben Hayes ^{9¹⁴}, Hans Daetwyle¹⁴, Josquin Tiblib¹⁵, Matthew Hayden ^{9¹⁴} and Eduard Akhunov ⁹

Tracing the ancestry of modern bread wheats

Caroline Foru¹¹², Thibault Lengv¹¹⁴, Michael Seidel¹⁰⁴, Alexsendro Tondell¹¹², Wandhill Duckming¹¹⁴, David Armisery¹¹⁴, David Lage¹¹, Benjamin Killan¹¹⁴, Halan Öskan0¹¹⁴, François Balfourier¹, Marta Mohar-Lang¹, Jacob Lage¹, Benjamin Killan¹¹⁴, Halan Öskan0¹¹⁴, Darren Watte¹¹, Sarah Dye¹¹, Thomas Letellier¹¹, Michael Alaux¹¹, Wheat and barley Legey for Breeding Improvement (WHEABLB consolium¹¹) and Result¹¹, Barles¹¹, Barles¹¹, Borles¹¹, Terd van Eurovijk¹⁰, Manuel Spannag¹¹, Klass F. X. Mayee¹⁰⁴, Robbie Watug¹⁰²¹⁰⁴, Nils Stein0¹¹⁷, Luigi Cattibuil¹⁰¹, Ologor Jabeer¹¹⁴, Diele Charmet¹¹⁴ and Heime Salee¹¹⁰.

Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation

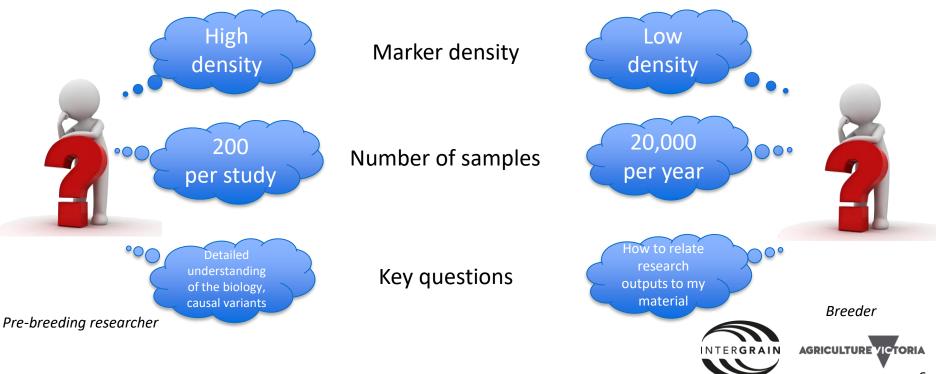
Joanne Russell^{1,19}, Martin Mascher^{2,3,19}, Ian K Dawson¹, Stylianos Kyriakidis¹, Cristiane Calixto⁴, Fabian Freund¹, Micha Bayer¹, Jian Milne¹, Tony Marshall-Griffubs¹, Shane Heinen⁴, Anna Hofstaf⁰, Rajiv Sharma^{2,1}, Azet Himmelhock¹, Manuela Kanzufi, Maarten van Zomeredd¹, John W Shows^{1,4}, Karl Schmid⁵, Benjamin Kilian^{2,6}, Gary J Muchibauer^{4,6,11}, Nils Stein^{1,21} & Robbie Waugh^{1,6,13}

Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley

Camilla Beate Hill^{1,1} (b), Tefera Tolera Angessa^{1,7}, Lee-Anne McFawn², Debbie Wong³, Josquin Tibbits³, Xiao-Qi Zhang¹, Kerne Forrest³, David Moody⁶, Paul Teffer⁵, Sharon Westcott², Dean Diepeveen², Yanhao Xu⁶, Cong Tan¹, Mitthew Hoyde^{4,4} (b) and Chengda Ul^{1,5An}₂

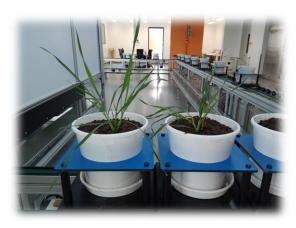
Genebank genomics highlights the diversity of a global barley collection

Sara G. Millener^{® III}, Matthias Latel^{® III}, Shin Taketa J. Elens Rey Mazino[®] J. And Himmelbach[®] J. Markus Oppermann[®] J. Stephan Weise[®] J. Heimut Knäpfer[®] J. Markin Basterechen J. Patrick König[®] J. DandaSchiller[®] Kally Sharma^{® III}, RAK, Pasam[®] J. Trans Maller[®] J. Samodi G. Kattinge^{® III}, Dangdong Ku¹, Jing Zhang¹, Gehand Herrer¹, Thomas Maller[®] J. Simodi C. Kattinge^{® III}, Backfeller⁰ Y. Yong Jing¹, Mari X. Gonzalize¹ J. Samodi S. And Fahedelli, Sandra Tarber⁴, Frank Ordon[®] , Matthias Lang¹⁰, J. And Yao Samodi N. And Handelli, Sandra Tarber⁴, Une Scholz¹⁰, Markin Masche^{® J.} and INS Stein^{0,11}


Multiple genotyping platforms

- Illumina iSelect
 - 90K wheat
 - 50K barley
- Axiom 35K, 820K
- Targeted GBS
- GBS
- Skim WGS
- WGS

How to choose?


How can researchers and breeders best choose a genotyping platform, considering they have different priorities?

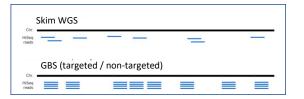
Aim

To use the latest advances in genomic resources to design an efficient genotyping platform that provides a bridge between research and breeding.

In particular, a genotyping platform that enables research, breeding and rapid deployment for impact.

AGRICULTURE VICTORIA

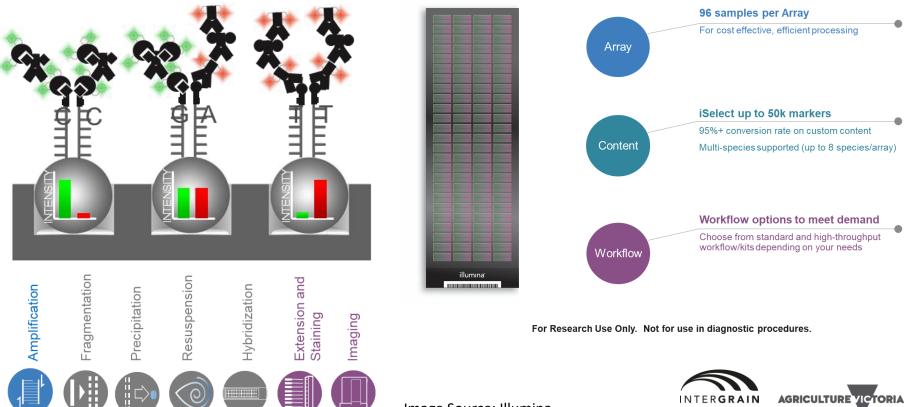

Why Illumina Infinium[™] XT technology?


SNP chips vs genotyping-by-sequencing

- faster sample turnaround
- higher genotype call rates, typically >90%
- more accurate HET calling
- better suited for large genomes
- easier to deploy at scale

Limitations of existing SNP chips

- potential ascertainment bias
- based on incomplete genome assemblies, limited diversity
- markers not always single dose
- SNP density often higher than needed
- designed for specific applications; i.e. not ideal for both research and breeding
- not designed for imputation



- cost

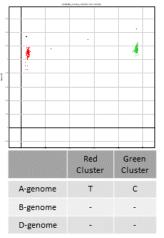
From theory to practice

Infinium[™] Wheat Barley 40K design objectives

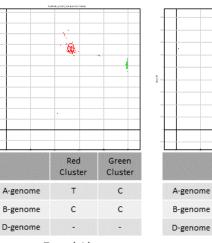
To design a genotyping platform that enables *research*, *breeding* and *rapid deployment for impact*.

- Design single locus SNP targets with no nucleotide variation underlying assay probes to maximise genotype calling accuracy
- Use maximally diverse and representative **worldwide germplasm** to minimise ascertainment bias
- Design SNP assays to tag LD blocks in worldwide germplasm to enable accurate imputation
- Minimise cross-species probe hybridisation to enable dual sample hybridisation
- Include specific SNP content to drive utility in both pre-breeding research and breeding

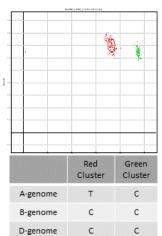
Requires good capture of diversity in reference set Relies on high quality genome assemblies Literature, in-house research, etc.

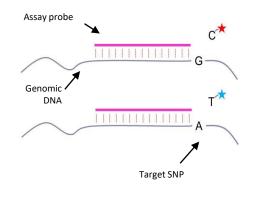

11

Importance of single locus SNP targets

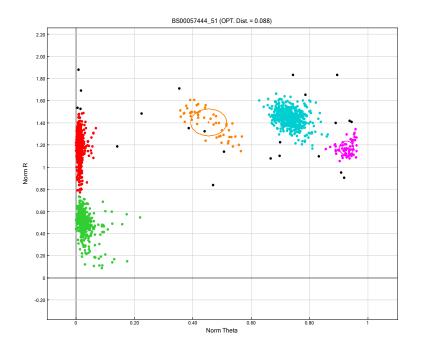

SNP cluster compression affects genotype calling accuracy especially for heterozygous loci

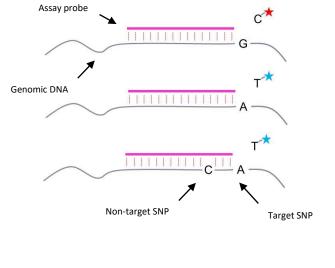
Each SNP cluster position represents the sum of all loci assayed


- Dependent on ratio of nucleotides (A or T vs. C or G) and SNP locus copy number
- y axis [R = normalized X + normalized Y] vs. x axis [Theta = $2/\pi$ Tan-1(Cy5/Cy3)]


Diploid Theoretical Theta value 0.0 and 1.0

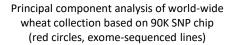
Tetraploid Theoretical Theta values 0.0 and 0.5 0.5 and 1

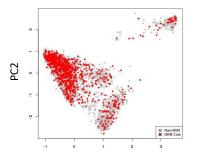

Hexaploid Theoretical Theta values 0.0 and 0.33 0.67 and 1.0

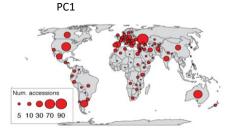


Importance of probe design

Segregation of nucleotide variants underlying a SNP probe affects genotype calling accuracy

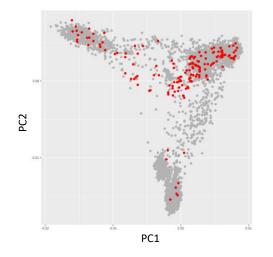





Wheat germplasm

1,200 accessions selected to maximally capture genetic diversity among 6,700 globally diverse wheat accessions comprising landraces, released varieties, synthetic derivatives, and novel trait donor and historical breeding lines

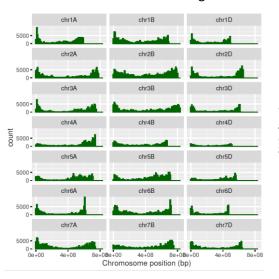
Geographical distribution of wheat accessions used in He *et al*. 2019 according to country of origin

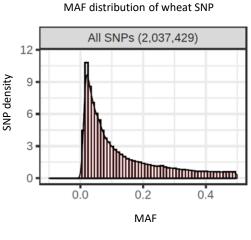

Dataset	Туре	# lines	Reference
He et al.	Exome	890	Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. <u>Nat Genet.</u> 2019 51:896-904
AVR	Exome	310	Globally diverse accessions; unpublished
InterGrain	Exome	102	Historical breeding lines; unpublished

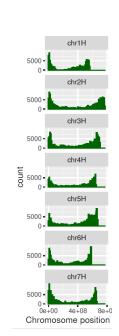
Barley germplasm

267 exome-sequenced *H. vulgare* landraces and *H. spontenaeum* accessions selected to capture geographical diversity in barley, as well as 120 whole genome sequenced historical breeding lines and targeted sequence capture data from 1,000 globally diverse H. vulgare accessions

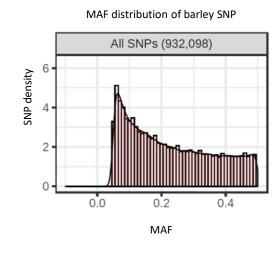
> Principal component analysis of ~6000 accessions from the 20K IPK genebank collection based on GBS markers (red circles, exome-sequenced landraces)



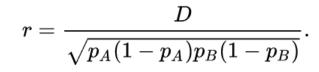

Dataset	Туре	# lines	Reference	
Russell <i>et al</i> .	Exome	267	Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. <u>Nat</u> <u>Genet.</u> 2016 48:1024-30	
Milner <i>et al.</i>	GBS	19,778	Genebank genomics highlights the diversity of a global barley collection. <u>Nat Genet.</u> 2019 51:319-326	
Hill et al.	Capture	1000	Hybridisation-based target enrichment of phenology genes to dissect the genetic basis of yield and adaptation in barley. <u>Plant</u> <u>Biotech. J.</u> 2019 17:932-944	
InterGrain	WGS	120	Historical breeding lines; unpublished	



SNP discovery


Wheat 2,037,429 SNPs Against IWGSC RefSeq v1.0

Barley 932,099 SNPs Against Morex v1.0

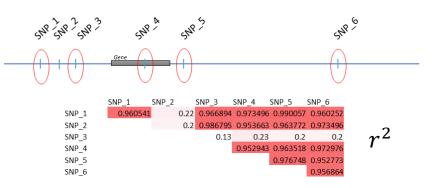

AIN

AGRICULTURE VICTORIA

Linkage Disequilibrium (LD)

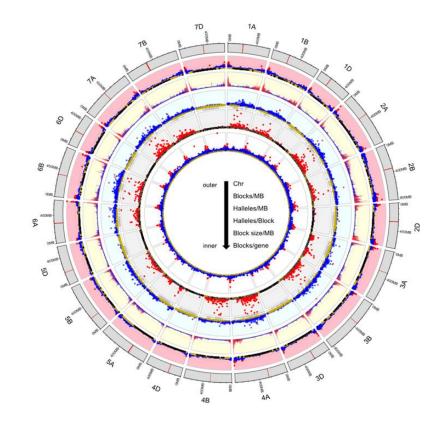
Linkage disequilibrium refers to the non-random association of alleles at two or more loci in a general population. When alleles are in **linkage disequilibrium**, haplotypes **do not** occur at the expected frequencies

 r^2 is a common measure of linkage disequilibrium,

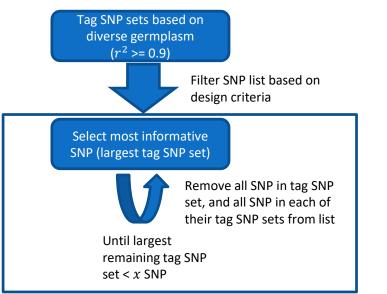

Importantly, when alleles are in LD, they are not independent.

This means that information about one locus is informative about other locus.

Goode E.L. (2011) Linkage Disequilibrium. In: Schwab M. (eds) Encyclopedia of Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16483-5_3368



Defining relationship between SNP using linkage disequilibrium



SNP_1, SNP_3, SNP_4, SNP_5, SNP_6 form a **tag SNP set**. Selecting one of these SNP, eg: SNP_1, the remaining 4 SNP are referred to as tSNP

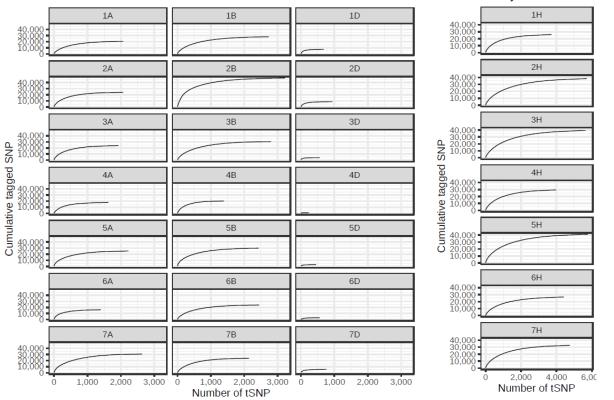
SNP selection algorithm

Repeat process with x = 10,20,50

- Considers SNP equivalent allowing further filtering
- Not biased by pre-existing biological knowledge
- Minimises SNP number to maximise LD capture
- Repeat process builds in **redundancy** for large tag SNP sets, as well as **increases confidence** for NULL calls

Tagging LD blocks in globally diverse germplasm

Result of applying selection algorithm to wheat and barley. Dotted line shows end point of first pass


Wheat Barley 600,000 Cumulative tagged SNP 2200,000 -Cumulative tagged SNP 7000000 750,000 r² r² 0.5 0.5 0.7 0.7 0.9 0.9 _ _ 0 0 10,000 20,000 30,000 10,000 20,000 30,000 0 Number of selected SNP Number of selected SNP AGRICULTURE VICTORIA

Tagging LD blocks in globally diverse germplasm

Result of applying selection algorithm to wheat and barley, per chromosome

Wheat

Barley

Importance of minor allele frequency (MAF) distribution

Need to balance between a range of application-specific needs: from bi-parental mapping populations (where any polymorphism between parents is sufficient) to global diversity (where rare subpopulation-specific variants are important to differentiate divergent samples, important when introgressing novel genetic variation, for example).

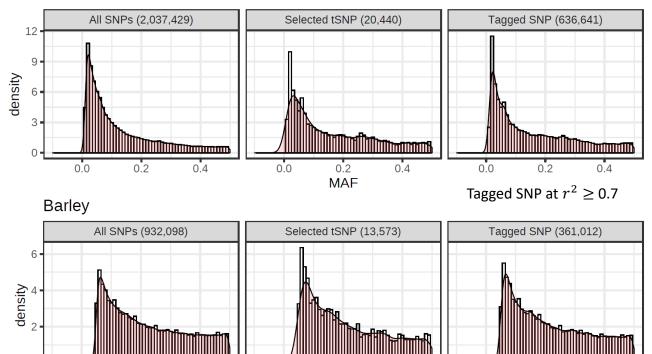
Low MAF

- Important to differentiate varieties from each other (reduce ascertainment bias)
- Chance SNP appears as monomorphic SNP when population diversity is limited

High MAF

- Important for background variance and LD estimates
- Lower MAF variants will regress onto high MAF SNP

MAF distribution


Wheat

0

0.0

0.2

0.4

0.2

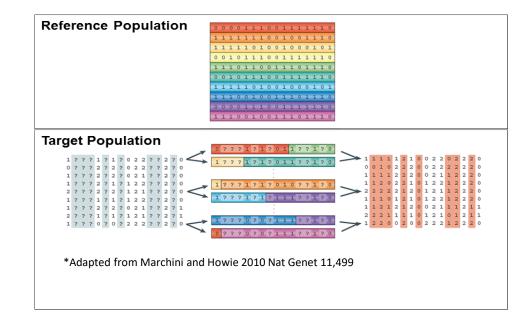
MAF

0.4

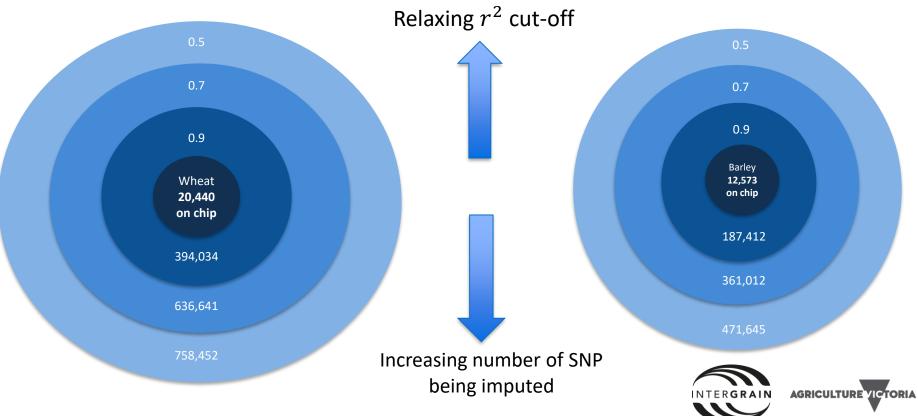
0.0

0.2

0.4


0.0

AGRICULTURE VICTORIA


Using imputation to recover statistical power

- With the SNP selection algorithm we have defined a method to maximise informativeness of a small set of SNP.
- This is important because in order to reduce cost ٠ per sample, number of SNP on chip needs to be as low as possible.
- The downside is that with fewer SNP, we have less statistical power relative to higher density assays, eg: exome SNP discovery.
- Imputation is a statistical method to infer missing genotypes using a set of reference haplotypes
 - The selected SNP maximise number of tSNP
 - Using imputation we can recover a large ٠ proportion of the SNP we do not genotype and *increase statistical power*



Defining the imputation target set

Imputation accuracy in wheat

Based on 100-fold in-silico cross-validation

Exome genotypes

Imputation accuracy in barley

1.0

0.9

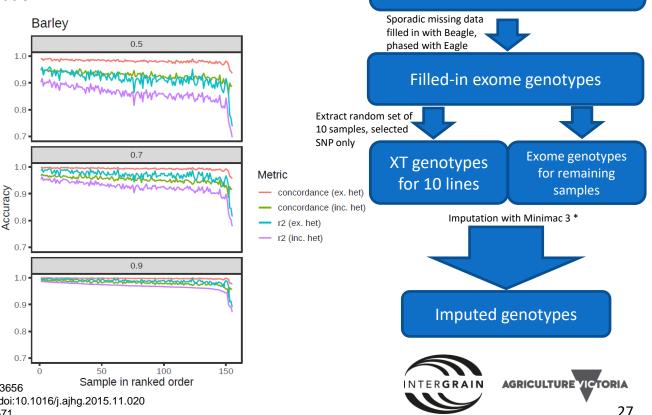
0.7

1.0

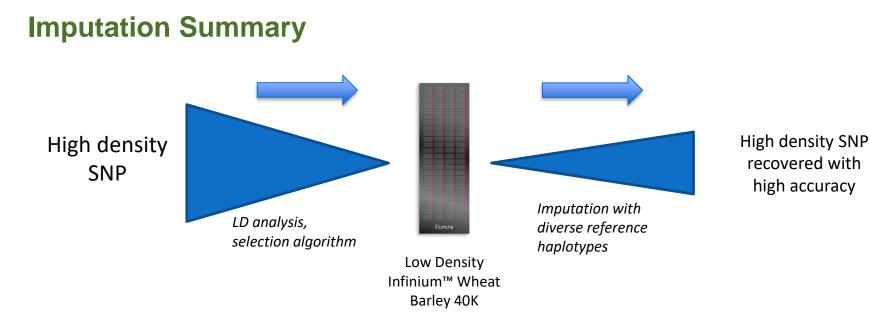
0.7

1.0

0


Based on 100-fold in-silico cross-validation

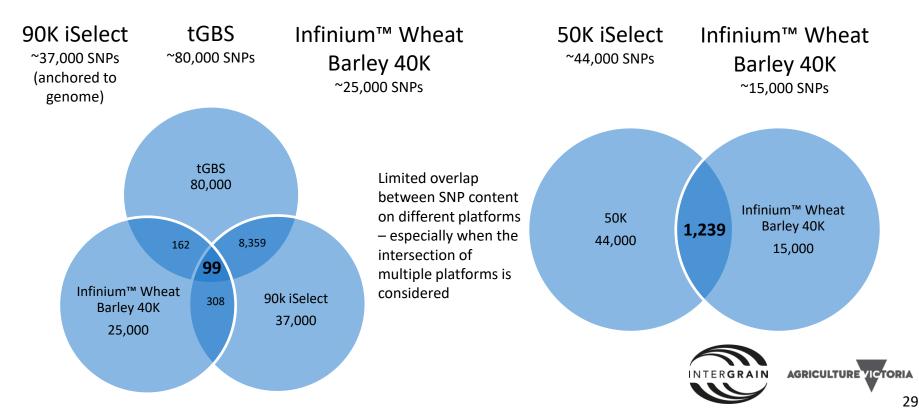
XT SNP imputed to tSNP set for: $r^2 \ge 0.5$ (471,645 SNP) $r^2 \ge 0.7$ (361,012 SNP) $r^2 \ge 0.9 (187,412 \text{ SNP})$


Reduced accuracy relative to wheat, though strictest measure of accuracy (r^2 including heterozygous positions) remains above 90% for majority of samples in $r^2 \ge 0.7$ target.

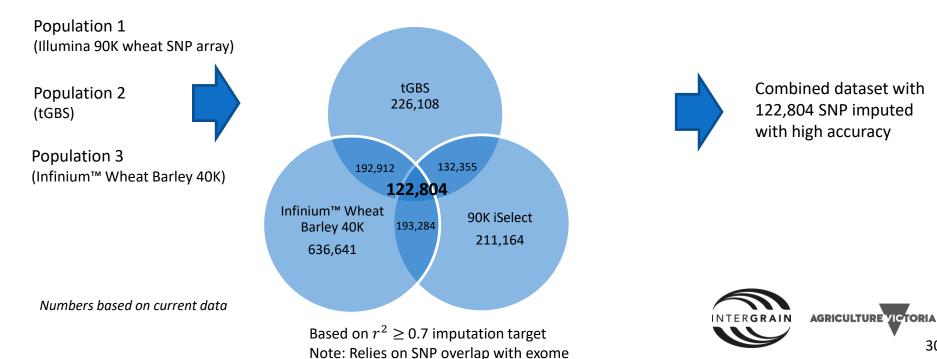
Expect improved accuracies as reference population size is increased.

Minimac: Das et al. (2016) Nature Genetics doi:10.1038/ng.3656 Beagle: Browning and Browning (2016). Am J Hum Genet. doi:10.1016/j.ajhg.2015.11.020 Eagle: Loh et al. (2016) Nature Genetics doi: 10.1038/ng.3571

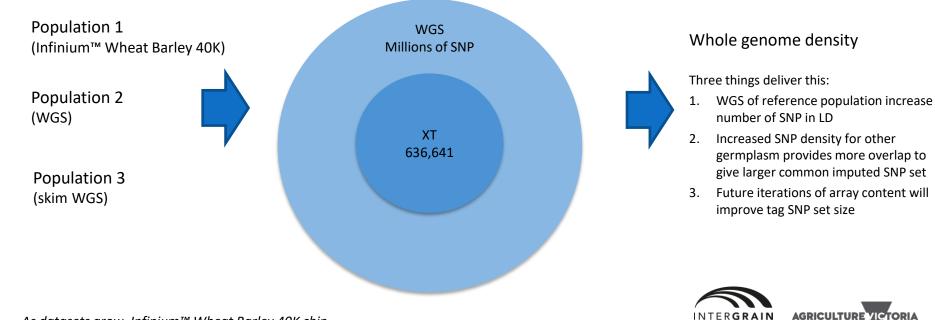
Exome genotypes


In addition to increasing statistical power relative to raw genotypes, we can use imputation to *integrate different genotyping platforms*.

Integrating across platforms – before imputation


Wheat

Barley


Infinium[™] Wheat Barley 40K provides a step-change for imputing to high density

Imputation to high density allows **legacy** genotypic datasets generated from germplasm genotyped using existing technologies to be integrated for downstream analyses such as genomic selection and GWAS

Infinium[™] Wheat Barley 40K provides a step-change for imputing to high density

Future-oriented design creates opportunity to achieve much higher SNP density for integration of future genotypic datasets, as well as **a process to continually update chip content**

As datasets grow, Infinium[™] Wheat Barley 40K chip performance can evolve in parallel

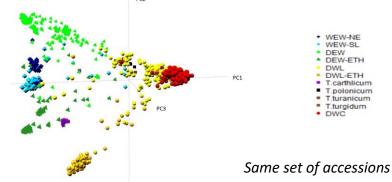
Enhancing utility of Infinium[™] Wheat Barley 40K for research and breeding

Provides a bridge between marker-assisted breeding (MAS) and Genomic Selection (GS)

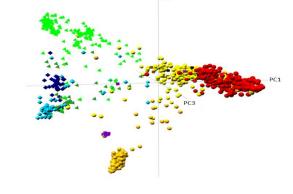
SNP Content	Barley	Wheat
Published trait linked markers	184	483
Published SNP tagging GWAS signals for key breeding traits	0	467
Markers providing direct link to GBS genotyped 20K barley accessions from IPK genebank (Milner et al. 2019 Nat Genet. 51:319- 326)	685	n/a

Wheat traits: metal ion tolerances, fungal and nematode resistances, frost tolerance, phenology, glutenin subunits, LMA, PHS, grain end-use quality, plant height, herbicide tolerance

Barley traits: metal ion tolerances, fungal and nematode resistances, frost tolerance, phenology, malting quality, grain characteristics, row number, herbicide tolerance



Enhancing utility of Infinium[™] Wheat Barley 40K for research and breeding

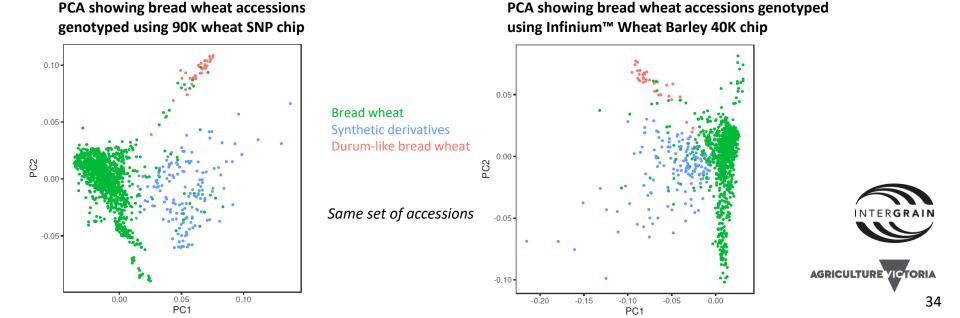

2,615 iSelect 90K SNP chip markers tagging tetraploid (A- and B-genome) diversity

comprises SNP private to wild and domesticated emmer, durum landraces and T. turgidum subspecies, identified from genotyping 2,000 accessions capturing tetraploid diversity (Maccaferri et al. 2019 Nat. Genet. 51, 885-895)

PCA showing various groups of tetraploid wheat accessions genotyped using 90K wheat SNP chip (n=1800)

PCA showing various groups of tetraploid wheat accessions genotyped using Infinium[™] Wheat Barley 40K chip (n=1800)

WEW-NE: Wild emmer wheat from North Eastern Fertile Crescent; WEW-SL: Wild emmer wheat from Southern Levant Fertile Crescent; DEW: Domesticated emmer wheat; DEW-ETH: Domesticated emmer wheat from Ethiopia; DWL: Durum wheat landraces: DWC: Durum wheat cultivars



Enhancing utility of Infinium[™] Wheat Barley 40K for research and breeding

1,226 exome SNPs tagging *Ae. tauschii* (D-genome) diversity

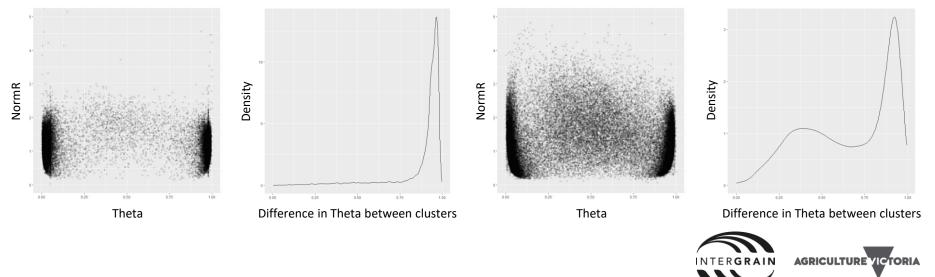
PCA showing bread wheat accessions

comprises *tauschii*-specific SNP selected for high D-genome coverage, MAF ≥0.10 in synthetic derivatives (derived from crosses involving 100 tauschii accessions) and enriched density in highly recombining chromosomal regions

Summary of content on Infinium[™] Wheat Barley 40K

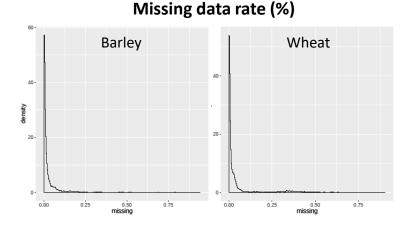
Version 1.0	Wheat	Barley	Total
Tagging SNP for imputation	20,665	13,469	34,134
Trait associated SNP	457	178	635
SNP linking germplasm resources	4,271	614	4,885
Total number of SNP	25,393	14,261	39,654

So, how does it actually perform?



SNP assay specificity – Single sample hybridisation

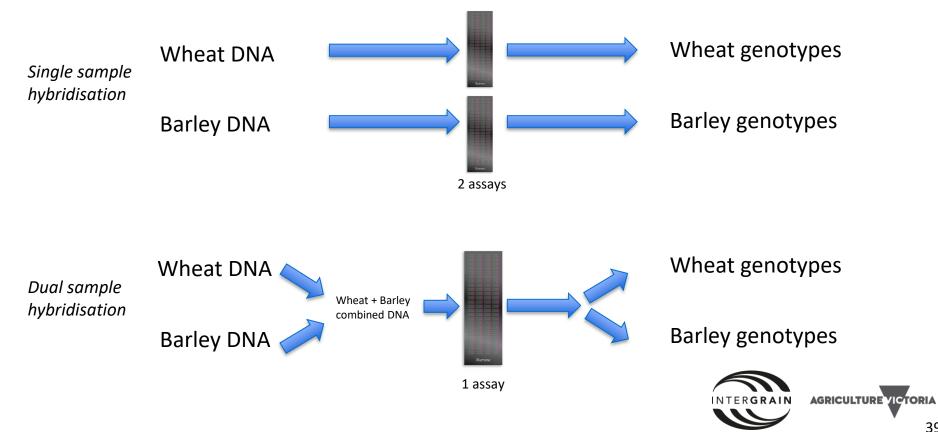
Majority of SNP assays interrogate a single locus in barley and wheat



Wheat SNP cluster positions for 24,100 assays revealing polymorphism

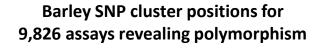
Genotype calling – Single sample hybridisation

High genotype call rate per sample; very high concordance between called and true genotype

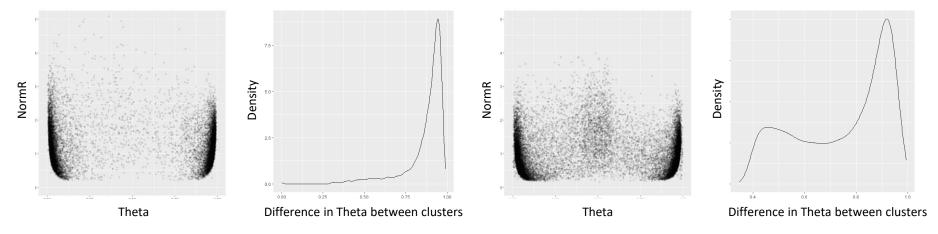


Average (%) correlation and concordance between Infinium[™] Wheat Barley 40K (single sample hybridisation) and exome-sequenced genotypes

	Including HET calls		Excluding HET calls		
	Correlation	Concordance	Correlation	Concordance	
Barley (90 samples)	97.2	98.2	99.2	99.8	
Wheat (423 samples)	95.7	97.6	98.1	99.5	



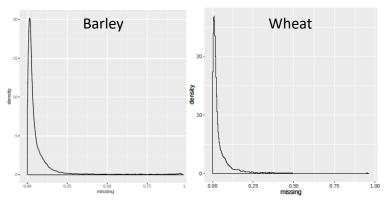
Single sample vs Dual sample hybridisation



SNP assay specificity – Dual sample hybridisation

70% and 40% of SNP assays show good cluster separation in barley and wheat

Wheat SNP cluster positions for 9,118 assays revealing polymorphism



▷ Very strict criteria was applied to choose which SNP were used for genotype calling; in hindsight this criteria could be significantly relaxed

Genotype calling accuracy – Dual sample hybridisation

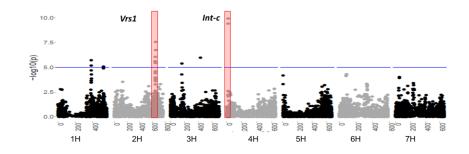
High genotype call rate per sample; very high concordance between genotype calls from single and dual hybridisation assays of same samples

Missing data rate (%)

 SNP attrition in dual hybridisation assays can be accurately recovered in *breeding germplasm* via imputation

Average (%) correlation and concordance between Infinium[™] Wheat Barley 40K single and dual sample hybridisation genotypes

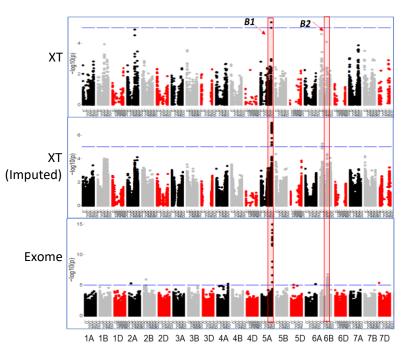
	Including HET calls		Excluding HET calls		
	Correlation	Concordance	Correlation	Concordance	
Barley (547 samples)	99.2	99.4	99.8	99.9	
Wheat (63 samples)	95.3	97.8	97.0	99.3	



GWAS with Infinium[™] Wheat Barley 40K

https://www.homebrewersassociation.org/zymurgy/zymurgy-extra-2-row-vs-6-row-barley/

 Germplasm* from the IPK exome-sequenced landraces (Russell *et al.*), genotyped on the Infinium[™] Wheat Barley 40K



Barley Row type

* Germplasm provided by Nils Stein, IPK

GWAS with Infinium[™] Wheat Barley 40K

Wheat Awned trait

• Germplasm from He *et al.* genotyped on the Infinium[™] Wheat Barley 40K

Awned

Awnless

Image Source: AVR

Genomic Prediction with Infinium™ Wheat Barley 40K

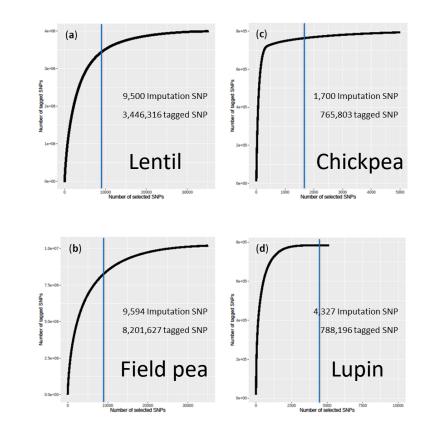
Wheat	Training Population Size	Obs.	Trials	BLUE Accuracy	h²	acc/sqrt(h²)
Yield	16,281	74,114	593	0.39	0.21	0.85
Stem Rust	8,271	17,772	74	0.35	0.42	0.54
B* colour	1,048	4,834	185	0.58	0.68	0.69

Barley	Training Population Size	Obs.	Trials	BLUE Accuracy	h²	acc/sqrt(h²)
Yield	3,952	40,345	264	0.31	0.35	0.52
Spot Form Net Blotch	3,522	6,009	-	0.56	0.56	0.75
Diastase	2,695	6,570	219	0.57	0.58	0.75

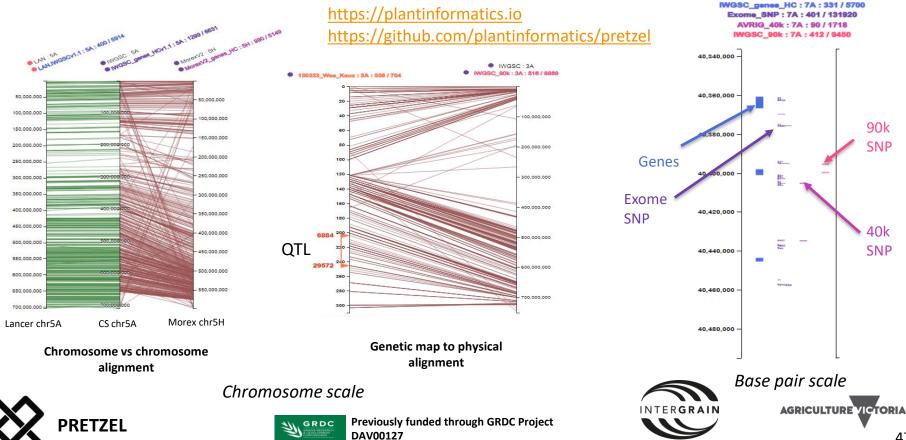
Image Source: InterGrain

Updating the Infinium[™] Wheat Barley 40K

Version 1.0	Wheat	Barley	Total
Tagging SNP for imputation	20,665	13,469	34,134
Trait associated SNP	457	178	635
SNP linking germplasm resources	4,271	614	4,885
Total number of SNP	25,393	14,261	39,654


Version 1.1 Additions	Wheat	Barley	Total
Extra tagging SNP for imputation	1,282	673	1,955
Filling in sparsely covered regions of genome	1,378	7	1,385
Trait associated SNP	1,878	69	1,947
Total number of SNP	4,538	749	5,289

Multispecies pulse 30K SNP chip


Species	Probes	Probe categories	
Lentil	10,528	Imputation	9,500
		Canadian linking	1,000
		Trait linked	28
Chickpea	4,449	Imputation	1,700
		Top 1k wild	1,000
		ICRISAT	1,000
		Wild spaced	735
		Trait linked	14
Fieldpea	9,597	Imputation	9,594
		Trait linked	3
Lupin	5,425	Imputation	4,327
		Wild	1,038
		Trait linked	60
Total	29,999		

 Multi-samples hybridisation also demonstrated with pulse 30K SNP chip, with ability to co-hybridise chickpea, lentil, lupin and field pea

AGRICULTURE VICTORIA

A web tool to enhance utility of Infinium[™] Wheat Barley 40K in research and breeding IWGSC : 7A

Conclusion

We have designed and tested a new Infinium[™] Wheat Barley 40K genotyping platform that bridges research and breeding applications:

- Delivers high quality, highly reproducible genotypes in wheat and barley;
- Enables imputation to high density to deliver increased statistical power and ability to integrate different platforms;
- Can dual hybridise wheat and barley samples, halving costs in high volume applications;
- Is being effectively deployed in InterGrain breeding program;
- Is being made available for use by the international community through Illumina.

Image Source: InterGrain

Acknowledgements

Agriculture Victoria

Raj Pasam Debbie Wong Don Isdale Kerrie Forrest Adam Dimech Sukhjiwan Kaur Zibei Lin Shiva Azizinia Yongjun Li Hans Daetwyler Josquin Tibbits Matthew Hayden Lab staff Ashley Robertson Sidhra Jani Thanuja De Alwis Yasodha De Silva Sanka Perera

InterGrain

David Moody Allan Rattey Daniel Mullan Jayfred Godoy Hannah Robinson Tress Walmsley

github.com/plantinformatics/pretzel Pretzel source code

https://github.com/plantinformatics/pretzel-input-generator A pipeline for generating inputs to Pretzel. Includes precomputed input data for a set of publicly available genomes and syntenic relationships

https://hub.docker.com/r/plantinformaticscollaboration/ Automated Docker builds for simple, fast deployment

* Infinium[™] Wheat Barley 40K chip is available for use in public pre-breeding research and breeding, and is distributed with a pre-trained SNP cluster genotype calling file

Contact matthew.hayden@agriculture.vic.gov.au or HRobinson@intergrain.com

