

NIAB Diverse MAGIC: dissecting trait genetic architecture across 70 years of wheat breeding

Goal

Reveal genomic basis of historical change and assess potential for future improvement

"Linking genotype with phenotype remains the **holy grail** of crop biodiversity studies"

(Hufford et al., 2019)

Linking genotype with phenotype

Bi-parental population

Multi-parental (MAGIC) population

Scott & Ladejobi et al. (2020)

Scott & Ladejobi et al. (2020)

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
- Population genotyping (low-coverage WGS)
- Phenotypes

- QTL mapping
- Genomic prediction
- Cross-phenotype trends

NIAB Diverse MAGIC founders

Founder Variety	Year of Listing	Country of Origin	Yield (t/ha)	
Holdfast	1935	UK	5.1	
Steadfast	1942	UK	4.6	
Bersee	1951	UK	5.4	
Banco	1956	Sweden	5.5	
Flamingo	1960	Netherlands	5.8	
Kloka	1965	Germany/UK	NA	
Maris Fundin	1975	UK	6.6	
Copain	1980	France	6.6	
Stetson	1983	UK	7.0	
Slejpner	1986	Denmark	7.9	
Brigadier	1993	UK	8.6	
Spark	1993	UK	7.6	
Soissons	1995	France	7.6	
Robigus	2003	UK	9.1	
Cordiale	2004	UK	8.9	
Gladiator	2004	UK	9.1	

• promoters & exomes sequenced to **20x**

- 1.13M SNPs
- Capture ~73% of global diversity

Minimal Haplotypic Diversity among sixteen founders

- No more than 3 haplotypes at ~89% of genes
- Selection and population bottlenecks reduced UK effective population size before the onset of modern breeding programmes?

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
- Phenotypes

- QTL mapping
- Genomic prediction
- Cross-phenotype trends

Recombinant Inbred Lines

- >500 Recombinant Inbred Lines
- **0.3x** Whole Genome Sequencing
- Imputed **1.1M SNP** sites with >**99% accuracy**

Founder Haplotypes

т	А	С	т	А	G	G	G	т	С
т	G	A	С	A	т	С	G	A	т
С	A	A	т	С	т	С	A	т	т
С	A	С	С	A	G	С	G	т	т

0.3x WGS coverage for 504 inbred lines

Founder Haplotypes

infer recombination mosaics impute genotypes

0.3x WGS coverage for 504 inbred lines

Founder Haplotypes

infer recombination mosaics impute genotypes

4.9-5.2 recombinants per Morgan (5 predicted)

99.1% accurate against genotyping array data (~5k sites)

0.3x WGS coverage for 504 inbred lines

Downsampling indicates accurate imputation from 0.075x even without the founder haplotypes as a reference panel

STITCH software (Davies et al., 2016)

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes

- QTL mapping
- Genomic prediction
- Cross-phenotype trends

Phenotyping

- Replicated yield trials with/without fungicide, >2000 plots per year
- 47 traits, of which 25 measured in two years (2017/18)

Nick Fradgley

Phenotype Category	Traits Measured		
Yield	Yield, Protein Content, Thousand Grain Weight, Specific Weight		
Disease Resistance	Yellow Rust Infection (x3 timings)		
Phenology	Germination Rate, Pre-Harvest Sprouting, Heading Date, Flowering Date, Vernalisation, Flag-leaf Emergence Date, Green Leaf Area, Flag Leaf Senescence		
Seed Traits	Width, Length, Area, Ear weight, Spikelet Number, Infertile Spikelets		
Growth Habit	Growth Habit, Ear Taper, Flag Leaf Angle, Flag Leaf Floppiness, Awn Presence/Absence		
Size	Height to Flag Leaf Base, Height to Ear Base, Flag Leaf Ear Distance, Ear Length		
Other	Pigmentation, Ear Waxiness, Leaf Waxiness, Lodging		

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
- Genomic prediction
- Cross-phenotype trends

QTL mapping

- Heritable variation explained by 1-4 QTLs, erg., Awns, pigmentation, spring habit
- Mix of large effect QTLs and polygenic loci of smaller effect, e.g., height and heading date

L C

- Heritable variation explained by 1-4 QTLs, erg., Awns, pigmentation, spring habit
- Mix of large effect QTLs and polygenic loci of smaller effect, e.g., height and heading date
- Most heritable variation not explained by large effect QTLs, e.g., yield and green leaf area

QTL summary

- **136** genomewide significant QTLs
- 42 genomic locations

11 HC colocalisations (e.g., known gene)10 LC colocalisations (e.g., genetic map)21 uncertain colocalisation

- Population captures 'green revolution' and latitudinal adaptation alleles
- Consistent with a low diversity, well-studied gene pool

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
- Cross-phenotype trends

Genomic Prediction

Olu**funmi**layo Ladejobi

Genomic Prediction Summary

Phenotype prediction accuracy assessed in subset of lines not used to create model

- Reasonable prediction accuracy (mean 0.43)
- Uses 1-465 SNPs (mean 155)

Predict potential for improvement

Ŵ

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
 - accuracy ~0.43 with 1-450 SNPs; large phenotype shifts require fixation of dozens of loci
- Cross-phenotype trends

Yield-Protein Trade-off

Improvement in yield has come with reduced protein content

Protein-Yield Deviation is the departure from this regression

Yield-Protein Trade-off

PYD in Year 1 PYD in Year 2 40 count 30 no awns 20 awns 10 0 Observed -log₁₀P Composite PYD p-values -log₁₀P 2 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D Expected -log₁₀P

- Higher Protein Yield Deviation in lines with Awns
- Heritability 0.41 (year 1) 0.25 (year 2)
- Prediction accuracy 0.26 (year 1) 0.13 (year 2)

Modest potential for targeted selection to break this trade-off

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
 - accuracy ~0.43 with 1-450 SNPs; large phenotype shifts require fixation of dozens of loci
- Cross-phenotype trends
 - modest potential for targeted selection to break yield-protein trade-off

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)

- accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel

- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
 - accuracy ~0.43 with 1-450 SNPs; large phenotype shifts require fixation of dozens of loci
- Cross-phenotype trends
 - modest potential for targeted selection to break yield-protein trade-off

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes

- 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
 - accuracy ~0.43 with 1-450 SNPs; large phenotype shifts require fixation of dozens of loci
- Cross-phenotype trends
 - modest potential for targeted selection to break yield-protein trade-off

NIAB Diverse MAGIC wheat

- Founder genotyping (promoter & genic capture)
 - 16 founders (1935-2004); limited gene-level haplotypic diversity
- Population genotyping (low-coverage WGS)
 - accurate genotyping strategy for 0.075-0.3x with/without haplotype reference panel
- Phenotypes
 - 72 phenotypic measurements across 2 years

- QTL mapping
 - 136 QTL at 42 Loci (21 colocalised); Mendelian to Polygenic traits
- Genomic prediction
 - accuracy ~0.43 with 1-450 SNPs; large phenotype shifts require fixation of dozens of loci
- Cross-phenotype trends
 - modest potential for targeted selection to break yield-protein trade-off

Continue selecting from within existing variation (and introgressing selected exotic alleles)?

Or, would it be worth ambitiously expanding the pool of available haplotypic diversity genomewide?

Acknowledgements

Data/Resources Freely Available Project website:

http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse

Preprint:

Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding *bioRxiv* doi:10.1101/2020.09.15.296533 https://www.biorxiv.org/content/10.1101/2020.09.15.296533v1

Review:

Multi-parent populations in crops: A toolbox integrating genomics and genetic mapping with breeding

Heredity (2020) 125, 396–416

Olufunmilayo Ladejobi Richard Mott

Alison Bentley James Cockram **Nick Fradgley** Keith Gardner Richard Horsnell Phil Howell Ian Mackay

Fiona Corke Thomas Brabbs