

Molecular Characterization of *TaMATE1* Homoeologues Genes and The Analysis of OAs Genes Expression Under Al Stress in Bread Wheat

IWGSC Workshop, June 29, 2014

Ana Luísa Garcia-Oliveira, Paula Martins-Lopes, Roser Tolrá, Charlotte Poschenreider, Marta Tarquis, Henrique Guedes-Pinto, César Benito

Abiotic Stress Tolerance: Crop Productivity

Global climate changes and burgeoning human population pressure are seriously affecting the arable land availability.

Utilization of less favorable soils by plants tolerant to abiotic stresses provides the greatest potential for agricultural expansion.

Wheat: Global & Portugal Perspective

Globally, wheat is grown on more land area than any other commercial crop and ranks second, after rice, as main human food crop

Wheat is a staple food in Portugal

Global Perspective of Acid Soils Prevalence

Figure: Distribution of acid soils (red colour) around the world (A) and Portugal (B). Source: von Uexkúll and Mutert, 1995; http://www.iambiente.pt/

Bread Wheat & Soil Acidity

In acidic soils, AI toxicity induces severe damages in plant root system and it interferes in the uptake of water and nutrients (Ca, P, Fe)

Figure - Al accumulation and cell membrane injuries in the root treated with Al (Garcia-Oliveira *et al.*, 2014 submitted)

- Prominent abiotic stress tolerance mechanisms include:
 - Altered gene expression Facilitated membrane transport

Molecular Basis of Al Tolerance in Plants

So far, natural variation for AI tolerance has been explained by mainly two genes in different plant species :

> **ALMT1** (Al-Activated Malate Transporter 1)

- Wheat (Sasaki et al., 2004).

MATE1/AACT1 (Multidrug and Toxic compound Exudation Al-Activated Citrate Transporter 1)

- Sorghum (Magalhães et al., 2007)
- Barley (Furukawa et al., 2007)

Objectives:

- Cloning and mapping of MATE1 gene in bread wheat
- Molecular characterization of TaMATE1 homoeologues
- To investigate the upstream variation of *TaMATE1* and *TaALMT1* genes in selected diverse genotypes

Phenotypic Variability Related to AI Tolerance

Figure: Physiological differences between Anahuac (Al sensitive) and Barbela 7/72/92 (Al tolerant) roots with and without Al stress (Eriochrome root re-growth assay)

TaMATE1 Genomic, Transcript & PutativeProtein Structure

Figure: Structure of the genomic sequence of *TaMATE1* (upper left), TaMATE1-4D transcript (right) and putative protein structure (below left)

А gegeecaagagtgegagtgeaacecaagacacacagegetetgeacecagtggeeggee actttgctacttcaggccagagctgctgatcggtttccgtataagtaggggggagctgcc gettetecetgtgeteteateceteteacagtectecgtecgageacgtatatacee tgaacgagcgagcgaacgatcggttgatcgatcgacctctcaggcaagcatccactgtgt M E E G A A A S M T V G E K R V A V D V T D A A A A A N G H G P E E K A A E D gttccagegecgtctgcattgtccggctggcccaggacagggatgtacctcttcgtt V P A P S A L S G W P R T T G M Y L F V atgaacatcaggttcgtcttcaagctcgatgagctcggggtcggaggtgctgcgcattgcg MNIRFVFKLDE LGS L gtgccggcgtcgcttgccttggccgccgatcccctcgcctccttggtggacacagcattc LAADP LAS v DTAF atcggacgtctaggttcggtggagatagcagctgttggtgtttctattgccatatttaac IGRLGSVEIAAVG VS caagtotogaaagtgtgcatotacccactogttagcgtaacaacatcattogtcgctgaacaacaacatcattogtcgctgaacaacatcattogtcgctgaacaacatcattogtcgctgaacaacatcattogtcgctgaacaacatcattogtcgctgaacV S K V C I Y P L V S V T T S F V A E gaagatgecatcattageaagtaectagaagaaaataacageaaagacettgagaaage E D A I I S K Y L E E N N S K D L E K A gctcatgtgcattcagatgcctgcaatgtgcccgcatctggtggtgatacgccagtgtgc A H V H S D A C N V P A S G G D T P V C gctaattettgtatacccacagagtgtgtgtgtgtgtctctccaatcaagggtgcaagagagg A N S C I P T E C A D L S N Q G C K R R ${\tt tacataccttctgtgacatcggctctaattgttggctcatttctcgggctagtccaggcc}$ Y I P S V T S A L I V G S F L G L O A gtgttcctcatcttttcggcgaaagttgtgttgggcatcatgggtgtgaaacatgactca LIFSAKVVLGIMGVKHDS ccaatgctagaaccog oggttcgatacctaacgatcagatcacttggtgctcccgctgttMLEPAVRYLT I RS ctcctgtctttggcaatgcagggtgttttccgaggettcaaagatacaaagacaccgttg AMQGVFRGFKDTK ggttggagatgcaacaatatcatcctagacccaattttgatgtttgt DAT TT LD L cacatgggtgtcactggtgccgcagttgctcatgtcatttcccagtatctgataactHMGV GAA v AH v Ι atgatettgatatgteggetegtecageaagttgatgttateccacegageettaaate LKFGRFLGCGF L L L acattetgegteactetggogtogtegetggeagoecgegaegggeeaaceateatggeg LASSLAARDGPTIMA gccttccagatctgctgccagctctggctcgcgacgtcgcttctcgccgatggattggcc CCQLWLA 0 I gttgctggacaggcagtgctcgcaagcgcgttcgccaagaacgataccaagaaggtgatt V A G Q A V L A S A F A K N D T K K V I gccgcggacctctcgtgttcggcaggtgagcattgttctggggatgggtctcacagtggt A A T S R V R Q V S I V L G M G L ctcggtctcttcatgaagttcggcgccggcgttttcacaaaggacgccgctgtgatcgac L G L F M K F G A G V F T K D A A V I D gtcatccacaaaggcatccogttgtgcgcggcaggcaggacgataaaogcoctggggtt VIHKGIP FVAG ТО gtgttcgacggcatcaacttcggagcacaagactacacctactctqcatactccat G I N F G A O D Y T Y S A ggggtggcgtccatatccataccatgcctggtgtacctttctgcgcacaagggattcatc AHKGF ggcatatgggtcgcattgaccatctacatgagcctcaggaccgtagccagcacctggagg VALTIYMSLRT v Α atgggggcagcgagcgggccatgggttttcctccggaagtgatcggctcgcaagattgat MGAASGPWVFLRK

Phylogenetic Analysis of MATE1 Proteins

Figure: Phylogenetic tree constructed on the basis of a.a. sequences of known and putative MATE1 genes

Chromosomal Mapping on *TaMATE1* Homoeologues

Figure TaMATE1 mapping on wheat chromosome from genome D using nullitetrasomics lines [A].
M (Marker); 1 ('Chinese Spring' control); 2 (N4AT4B); 3 (N4A4D); 4 (N4BT4A); 5 (N4BT4D); 6 (N4DT4A); 7 (N4DT4B)
Arms localization of TaMATE1-4D [B], TaMATE1-4B [C] and TaMATE1-4A [D]. M (Marker); 1 ('Chinese Spring' control); 2 (Dt4AS); 3 (Dt4AL); 4 (Dt4BS); 5 (Dt4DS); 6 (Dt4DL)

Relative Quantification of TaMATE1 Homoeologues in Root & Shoot Tissues

Figure: Quantification of TaMATE1 homoeologues using qRT PCR. * Significant P value < 0.05

Detection of Sukkula-like Transposon (SLT) in TaMATE1-4B promoter

<u>Triticum aestivum cultivar Carazinho transposon Sukkula-like, complete sequence; and MATE1B</u> gene, (Sequence ID: <u>gb/KC152459.1</u>[Length: 24979)

TaMATE1-4B barbela promoter	ACGCAGCGCCCGACCCCTTCTCCCCTCGCGCTCGCGCGAGCATCCCTC	48
<u>Sbjct 18244</u>	ACGCAGCGCCCGACCCCTTCTCCCCTCGCGCCGCCAGAACCCTTCGCGCGAGCATCCCTC	18303
TaMATE1-4B barbela promoter	TTCCCGATCTCGCATCGTGCCTGATCCCCCTCACTCGCTCG	108
<u>Sbjct 18304</u>	TTCCCGATCTCGCATCGTGCCTGATCCCTCACTCGCTCGATCCATCC	18363
TaMATE1-4B barbela promoter	GCACGCCCGCATCGCTCCAGGAAGGTGCTCCCCGCGCCTTCGCCTCCCCTTCTCCTGCTC	168
Sbjct 18364	GCACGCCCGCATCGCTCCAGGAAGGTGCTCCCCGCGCCTTCGCCTCCCCTTCTCCTGCTC	18423
TaMATE1-4B barbela promoter	CTCAGAAACGCCACCAGGCCTCTCGGGCAAGCATCCACTGTGT 211	
Sbjct 18424	CTCAGAAACGCCACCAGGCCTCTCGGGCAAGCATCCACTGTGT 18466	

Figure- Identification of SLT in the promoter of *TaMATE1-4B* homoeologue in bread wheat (upper left) Confirmation in diverse bread wheat genotypes (lower left and right)

Genotypes	(% root re- growth under 5ppm)	Sukkula like- transposon (Presence/Absence)	Origin
Alva	1.1	Absent	Portugal
Almansor	0.0	Absent	Portugal
Anahuac	0.0	Absent	Poland
Ardito	0.0	Absent	Portugal
Barbela 7/72/92	40.4	Present	Portugal
Barbela 55/88/92	41.4	Present	Portugal
Barbela 61/94/92	38.3	Present	Portugal
Barbela 58/70/92	41.2	Present	Portugal
Barbela 6/93/92	31.0	Present	Portugal
Barbela 35/94/92	35.1	Present	Portugal
Barbela 16/95/92	17.9	Present	Portugal
Barbela15/92/92	16.3	Present	Portugal
BH1146	27.6	Absent	Brazil
Egipcio	0.0	Absent	Portugal
Eufrates	0.0	Absent	Portugal
Fronteiriço	0.0	Absent	Portugal
Jordão	0.0	Absent	Portugal
Magueija	42.6	Present	Portugal
Mocho de Espiga Branca	15.4	Present	Portugal
Mocho Rapado	0.0	Present	Portugal
Nabão	9.4	Absent	Portugal
Roxo	0.0	Absent	Portugal
Ruivo	45.0	Present	Portugal
Sacho	2.7	Absent	Portugal
Saloio	0.0	Absent	Portugal
Sever	0.0	Absent	Portugal
Viloso Mole	42.8	Present	Portugal
Mourisco preto	1.0	Absent	Portugal
Atlas66*	-	Absent	USA
Chinese Spring*	-	Absent	China

Citrate Efflux Quantification

Figure: Time course of citrate efflux from intact roots of two bread wheat genotypes

Relative Quantification of TaALMT1 and its Promoter Analysis

*Statistically different P value < 0.01

Figure: Relative transcript level of TaALMT1 and its promoter analysis in Barbela 7/72/92 and Anahuac

TaALMT1 promoter analysis exhibited that Barbela 7/72/92 contains three tandem repeats of a 205 bp block (type VI promoter), whereas AI-sensitive genotype Anahuac showed only a single block (type I promoter)

Conclusion

- TaMATE1, a citrate transporter gene localized on the long arms of homoeologous group 4 chromosomes in bread wheat.
- Expression profiling identified biased transcript expression of TaMATE1 homoeologues in bread wheat.
- In Barbela 7/72/92, the presence of Sukkula-like Transposon in the upstream of TaMATE1-4B seems to play a major role in altering the transcript expression of TaMATE1-4B homoeologue which could play major role in citrate efflux.
- TaMATE1-4B allele having Sukkula-like transposon is widespread among AI tolerant Portuguese bread wheat genotypes which was considered as rare allele.

Conclusion

- The high basal level of TaMATE1- 4B and TaALMT1 in Barbela 7/72/92 shoots indicates that internal detoxification mechanisms of AI tolerance may also play an important role in this genotype
- Our results also indicate that the origin of similar transposon in Brazilian bread wheat cv Carazinho goes back to **Portuguese bread wheat germplasm** which might be primarily introduced in Brazil by Portuguese navigators during the early colonial period.
- Finally, we found a genotype were both genes ALMT1 and MATE1 are acting together to lead a genotype more tolerant to Al stress.

Acknowledgements

Paula Martins-Lopes & Henrique Guedes-Pinto

César Benito

Charlotte Poschenreider

Universitat Autònoma de Barcelona

Claudina Rodrigues-Pousada

