Use of PacBio long reads to improve assembly and annotation of prolamins in the wheat reference genome

> Yong Q. Gu USDA-Agricultural Research Service Western Regional Research Center Albany, California 94710, USA

Wheat prolamins

 α -gliadin, γ -gliadin, ω -gliadin

HMW-glutenin, LMW-glutenin

Wheat grain

Wheat protein polymer

Wheat dough

Wheat bread

Challenges of studying wheat prolamin genes

Gene	Copy Number			
HMW-glutenin	4 to 6			
LMW-glutenin	10 to 30			
α-gliadin	20 to 150			
γ-gliadin & ω-gliadin	15 to 40			

Bread wheat is hexaploid containing three highly related subgenomes (AABBDD)

Prolamin genomic regions are difficult to sequence

- Charactering the expression of individual genes is difficult
- Marker development for genotyping is difficult

Complexity of prolamin sequences

Identification of a complete set of prolamin genes in hexaploid wheat

illumina short reads have issues in assembling prolamin gene regions

- High copy gene family members
- Repetitive domains
- High rate of pseudogenes
- Polyploid genome with high repetitive DNA content

(GIGA)"

GigaScience, 6, 2017, 1–7

doi: 10.1093/gigascience/gix097 Advance Access Publication Date: 23 October 2017 Data Note

DATA NOTE

The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum

Aleksey V. Zimin^{1,2}, Daniela Puiu¹, Richard Hall³, Sarah Kingan³, Bernardo J. Clavijo⁴ and Steven L. Salzberg^{1,5,*}

Chinese Spring genome assembly with 40x PacBio long reads N50 contig size over 230 kb.

Contraction of the

A BioNano genome map was generated for the hexaploid wheat cv Chinese Spring

Editing and validation of sequence assemblies in prolamin regions with BioNano maps

States in the

Expression of prolamin genes

Approach

- 1. Map transcriptome reads to the annotated genes
- 2. Examine the alignments manually
- 3. Validate pseudogene sequences
- 4.Count reads to determine relative expression levels

Prolamin genes are intronless. Mapping reads to the complete set of prolamin genes provides more robust and accurate view of the expression of individual genes

o determine relative

Expression analysis by transcriptomics

Huo et al., 2018 Sci. Rep

Annotation of the α -gliadin genomic region of the B genome in Chinese Spring

Contraction of the local division of the loc

Annotation of wheat prolamin genes

States and

Huo et al., 2018, Frontier in Plant Sci.

Annotation of wheat prolamin genes

	HMW	Delta	Gamma	LMW	Omega	Alpha
Intact	4	2	11	10	5	26
Pseudogene	2	3	3	7	14	21
Total	6	5	14	17	19	47

A complete set of prolamin genes in hexaploid wheat cv Chinese Spring

- Use the manually annotated prolamin gene sequences to align with the ReSeqv1 and RefSeqv2
- Identify and verify discrepancies of prolamin genes between our published data and RefSeq.
- Make corrections and submission of re-annotated prolamin genes in RefSeqV2

Annotation of wheat prolamin genes

	Size (Mb)	Version 1.0	Version 2.0	Paper
Glu-3 & Gli-1A	5.33	295	142	9
Glu-3 & Gli-1B	6 53	368	74	А
	5.00	200	400	40
Glu-3 & Gli-1D	5.64	360	190	10
Gli-2A	2.05	132	56	1
Gli-2B	2.41	259	83	3
Gli-2D	1.10	147	28	1

Gap numbers in the prolamin genomic regions in different CS sequence assemblies

Annotation of wheat prolamins

Delta	Gamma	LMW	HMW	Omega	Alpha
5	14	17	6	19	47
4	12	14	0	0	33
1	2	3	5	15	3
0	0	0	1	2	2
0	0	0	0	2	8
	Delta 5 4 1 0 0	Delta Gamma 5 14 4 12 1 2 0 0 0 0	Delta Gamma LMW 5 14 17 4 12 14 1 2 3 0 0 0 0 0 0	DeltaGammaLMWHMW514176412140123500010000	DeltaGammaLMWHMWOmega5141761941214001235150001200002

29 prolamin genes have gaps in version 1

Version 2.0	Delta	Gamma	LMW	HMW	Omega	Alpha
Total	5	14	17	6	19	47
Match	5	13	17	5	4	36
Gap	0	1	0	1	15	1
Fragment	0	0	0	0	0	3
Unanchored	0	0	0	0	(+2Gap)	6(+1Frag)

18 prolamin genes have gaps in version 2

The wheat prolamin superfamily

First comprehensive map of wheat prolamins

Science=

ROAD MAP FOR

IWGSC, Science 2018

- Within the IWGSC RefSeq v1 annotation, 731 proteins were manually corrected, including 135 proteins that were added as a completely new sequence
- Expressed everywhere e.g. in roots, leaves, spike, pollen or grain

Immune responsive proteins are highly enriched in the glutenin and gliadin loci

A genome loci

Celiac disease
Wheat allergy
Baker's asthma

States and

Juhasz et al. 2018, Science Advances

Acknowledgments

USDA-ARS, WRRC

Naxin Huo Susan Altenbach Shengli Zhang **Edith Cowan University**

Angela Juhasz

University of Melbourne Rudi Appels

University of California, Davis Ming-Cheng Luo Tingting Zhu

Chinese Academy of Sciences Daowen Wang, Liling Dong