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genotype-to-trait relationships
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Constructing genome-to-phenome maps is critical for predicting
phenotypic outcomes of a particular genotype
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Reference genomes and diverse populations of re-sequenced and phenotyped
wheat accessions provide a powerful resource for connecting genomic and
phenotypic variation

Reference genomes Densely genotyped diversity panels
e Bread wheat cv. Chinese Spring (IWGSC, 2018) 1,000 wheat lines (whole exome capture) (He
*  Wild emmer wheat (Avni et al., 2017) et al., 2019)
* Aegilops tauschii (Luo et al., 2017) e 2100 RILs from NAM population (whole
* Durum wheat (Maccaferri et al., 2019) exome capture + GBS + 90K iSelect) (Jordan et
* Wheat Pangenome (10+ Wheat Genome Project) al., 2018)

* 44K wheat breeding lines (GBS) (Juliana et al.,

2019)

Mechanistic understanding of the genetic effects of individual mutations
requires integration of other types of genomics data
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Genome-to-phenome map — epigenome dimension
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Chromatin accessibility assays are critical for detecting epigenetically
modified regions of genome involved in regulation of gene expression
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Difference in the NGS read coverage between MNase-sensitive and MNase-
resistant treatments reflects open or closed chromatin states

MNase resistant MNase sensitive MNase resistant

NGS with lllumina and mapping reads to
the wheat reference genome
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While chromatin states in intergenic regions change from open to more closed from
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Even though chromatin accessibility of a region depended on %TEs, TEs in centrometic

regions still showed lower chromatin accessibility than TEs in the pericentromeric regions
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Chromatin accessibility of TEs, independent of TE type was associated with their |

proximity to genes
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T —
Chromatin accessibility of genes and their expression levels were associated with the
presence of TEs in the promoter regions, suggesting that TEs might affect gene function by
modifying chromatin states of regulatory regions
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Gene expression data from
Ramirez-Gonzalez, et. al. 2018
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Promoter regions showed highest levels of chromatin accessibility,
which correlates positively with gene expression levels
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Gene expression bias between homoeologous genes from the wheat genomes is
associated with differences in chromatin states of their promoter regions

Difference in expression between

homoeologous genes
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nough MNase Set ve Footprir VISF - outliers of chromatin accessibility) are

enriched around genes, majority are found within TEs.

MSF distribution

N\

A total of 177 Mb (1.26%) of the genome were classified as
MNase Sensitive Footprints (MSF)

86% of genes were located within 2 kb of at least one MSF

Most MSF are located in the intergenic regions (67% within
TEs) suggesting importance of TEs in regulation of gene
function

M Class 1 TE

M Class 2 TE

W Unclassified TE
HC genic

M LC genic
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To assess functional relevance of chromatin accessibility data we partitioning
genetic variation for agronomic traits using phenotyping and genotyping data
from the 1000 wheat exome project

1,000 genetically and geographically diverse wheat
N < | accessions were re-sequenced using exome capture
Exome sequencing of a diverse collection of resulting in discovery > 7 million SNPs

wheat landraces, cultivars and breeding lines

(87 RIS About 1000 whest kxomes project Phenotyping was performed for a number of

o) .;" é o Genome-level DNA sequence variation map Is required to establish links
. L4+ between causal variants and phenotypes as well as 10 understand the role

of environmental, demx '\ph ic and human-driven factors in shaping the : :
genomic diversity of enwheatHee we used a reference wheat a ronOII”C tralts
2 o enome leSC RefSeq v1.0 to generate a haplotype map based on the
Nele) v & ?ctod re-sequencing of more than 1,000 diverse wheat landraces and
- vars, and tetraploid wild and domesticated relatives.

memmmwm

http://wheatgenomics.plantpath.ksu.edu/1000ec/  Partitioning genetic variation (GCTA-GREML)
He at al., 2019
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Chromatin accessibility is a good predictor of the effect of SNP variation
on phenotype

Developed map of chromatin states across the wheat genome could be

useful for prioritizing SNPs in genomic selection or detecting causal SNPs
in gene mapping studies or GWAS
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Chromatin accessibility data
https://wheat-urgi.versailles.inra.fr/Seq-
Repository/Chromatin-accessibility

Filtering SNPs using differential chromatin ; .

accessibility profiles: "“%Q (M 13/Wheat

T3 database (C. Birkett, J. Jannink)
https://wheat.triticeaetoolbox.org/genome/mnase.pl

\> A Database for Triticeae and Avena
] 1l i

WH ear CAP

Coordinated Agricultural Project

T Wheat Chinese Spring IWGSC RefSeq v1.0 genome assembly (2018)

3 For more information, please follow this link: [(IWGSC Chinese Spring info page at GrainGenes)
IWGSC RefSeq v1.0 genome assembly paper: [Science magazine]
. Varictal SNP data is provided by the Akh and Dubcovsky Labs: [Dubsovsky Lab website]

| The 1,000 Wheat Exome paper can be accessed here.

GrainGenes (T. Sen) D) GrainGenes
https://wheat.pw.usda.gov/GG3/content/september-
2020-mnase-chromatin-states-tracks-iwgsc-chinese- M |
spring-genome-browser t2ll
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https://wheat.triticeaetoolbox.org/genome/mnase.pl
https://wheat.pw.usda.gov/GG3/content/september-2020-mnase-chromatin-states-tracks-iwgsc-chinese-spring-genome-browser

Genome-to-phenome map — transcriptome dimension
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‘ranscrlptlona‘ at‘as O| w”eat prowﬁes aescrlptlon O| gene expression

changes across tissues at differential stages, yet we still need to understand
genetic control of expression in wheat

Ramirez-Gonzalez et al.
Science. 2018;361:eaar6089
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Understanding the genetic control of gene expression variation (eQTL) can
improve our ability to detect causal genes and pathways

RNA-seq data from diverse panel of wheat accessions
GWAS of gene expression traits

cis-eQTL
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o —
GWAS identified ~37,000 eQTL regulating expression of ~8,000 genes

Chromosomes 2A, 2B, and 2D
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I I I I TR ITI==~,
eQTL are enriched in the regions of open chromatin defined using different
approaches including regions located distantly from genes

Open chromatin 1 = : ——
Open chromatin 2 = : S,
Open chromatin 3 = | =
Open chromatin 4 = : o
Closed chromatin 1 = —&— |
~T T } T T T
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Joint analysis of eQTL and trait-associated SNPs provides opportunity to
identify genes that are part of pathways controlling trait variation

Trait /\ /\ Expression
+1
e =

SNP
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Enrichment of eQTL among trait-associated SNPs suggest their
contribution to trait variation

cis-eQTL enrichment in GWAS
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Joint modeling of eQTL and trait-associated SNPs provides
opportunity to identify genes whose expression is associated with
trait variation

Exy

Trait (y) < Expression (x)

exy = ezy ezx
ezy ezx I

SNP (Z) Effect of expression of

gene expression X on traity
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By incorporating genes associated with agronomic traits and eQTL into the gene

co-expression networks it is possible to identify pathways controlling processes
underlying variation in a trait

Genes involved in regulation of
heading date and number of
spikelets per spike (includes
EARLY FLOWERING 3 - EIf3).

Co-expressed gene modules
including genes associated with
eQTL and trait ( ® red)
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Integration of genomic data from multiple dimensions of G2P map could
help to identify regulatory regions, genes and pathways underlying variation
in traits
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n} IWGSC RefSeq allows to connect identified genes and pathways associated with
CAS9? variation in traits with functional data from other crops and provide targets for
modifying genome using genome editing.

Genes from
IWGSC RefSeq
other crops s
s i,
7 et ,'f\; * Genes * Targeted
MUItl'OMICS . \\\;’ G ”:j \ ° Regu'atory CRISPR/Casg' .
datasets ' 8L SIS =) regions =) induced variation
A% AnpBS SSSL
N\ £ * Pathways .
N e i * EMS mutagenesis
Gene ‘ AT

mapping
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B, Knowledge of critical elements of biological pathways and their modes of
CASQi interaction opens possibilities for engineering traits by CRISPR-based editing and
creating alleles with specific effect on network
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I

Knowledge of critical elements of biological pathways and their modes of

CASQﬁ interaction opens possibilities for engineering traits by CRISPR-based editing and
creating alleles with specific effect on network
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Knowledge of critical elements of biological pathways and their modes of
interaction opens possibilities for engineering traits by CRISPR-based editing and

creating alleles with specific effect on network & &
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Conclusions

Joint analysis of eQTL and chromatin accessibility data provides a powerful tool for
detecting regulatory regions of the large wheat genome

Enrichment of trait-associated variants in the regions of open chromatin or eQTL
indicates relevance of these genome-to-phenome map’s dimensions for
understanding the genetic basis of major agronomic traits

Integrating additional ‘omics’ datasets into phenotypic trait analysis could help to

identify critical genes and pathways controlling biological processes underlying
these traits

This information could improve our ability to predict phenotypic outcomes of any
particular genome, and select genomic targets for engineering desired traits
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