# HIGH-FIDELITY LONG-READ SEQUENCING ENABLES RAPID DETECTION OF STRUCTURAL AND COPY NUMBER VARIANTS: A CASE STUDY IN SOFT WINTER WHEAT

### **DANIELA MILLER, PHD CANDIDATE**, NORTH CAROLINA STATE UNIVERSITY

BROWN-GUEDIRA LAB, NCSU, USDA-ARS EASTERN REGIONAL SMALL GRAINS GENOTYPING LABORATORY (ERSGGL)

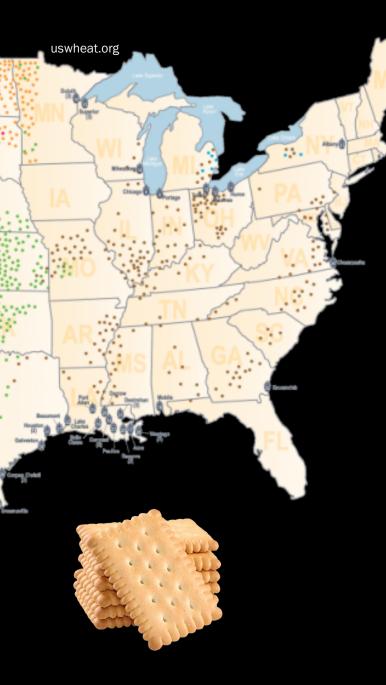
HULSE-KEMP LAB, NCSU, USDA-ARS GENOMICS AND BIOINFORMATICS RESEARCH UNIT (GBRU)

SATURDAY 14 JANUARY 2023 **#PAG30** 

INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM (IWGSC) WORKSHOP



# OUTLINE


## **1. Introduction**

## **2. HiFi Soft Winter Wheat Genome Assemblies**

3. Copy Number Variant (CNV) Detection: VERNALIZATION-A1 Gene

4. Structural Variant (SV) Detection: 5B/5G Introgression

# **INTRODUCTION** SOFT WINTER WHEAT GENOME ASSEMBLY



### SOFT WINTER WHEAT GERMPLASM IS NOT YET REPRESENTED IN CURRENT WHEAT ASSEMBLIES

- Of the existing wheat assemblies, only 'Jagger' is a US winter wheat cultivar.
- Soft Winter Wheat (SWW) is the most common market class in eastern US.
  - Soft wheat is used for crackers & cookies.
  - Winter wheat is sown in autumn and harvested in spring.
- Unique regional germplasm:
  - <u>AGS2000</u>' is representative of SE US regional SWW germplasm, is welladapted to warmer climates, and has stem rust (Ug99) resistance (see poster #46883).
  - 2. '<u>Hilliard</u>' is a broadly-adapted SWW cultivar with notable Fusarium head blight (FHB) resistance.

# WHEAT GENOME ASSEMBLY REMAINS CHALLENGING AMIDST NEXT GENERATION SEQUENCING (NGS) BOON

Chromosome

The **15 gigabase** hexaploid wheat genome (2n = 6x = 42, AABBDD) is 80% repetitive with large complex repeat structures.

### SHORT-READ SEQUENCING (NGS)

- Relatively low error rates
- Repeat sequences longer than read lengths (i.e. > 600 bp) cannot be resolved
- Minor errors still cause mis-assembly between highly homo(eo)logous regions

### LONG-READ SEQUENCING (ONT, PacBio CLR)

Chromosome

Chromosome

coloradowheat.org

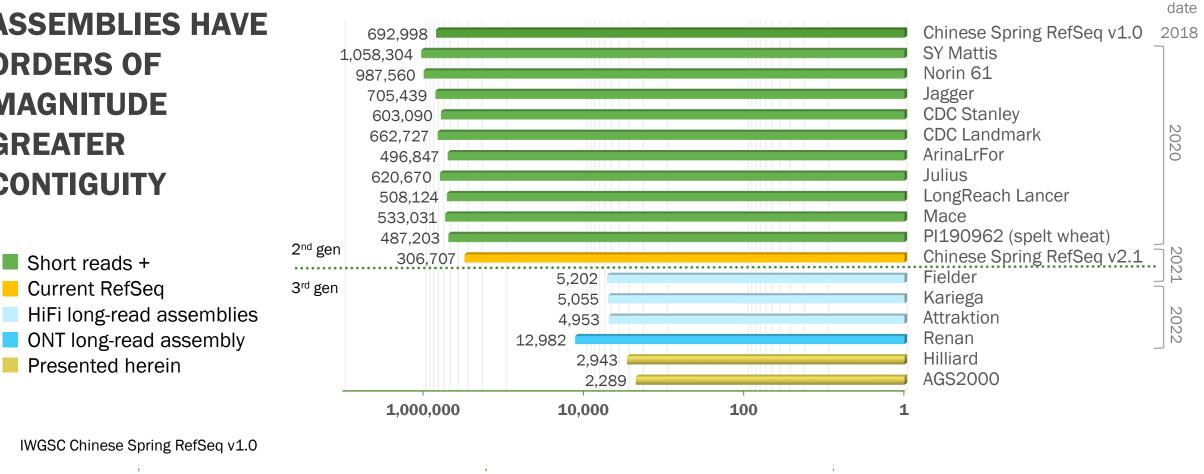
Long reads can span large repeats

From Ancestor D XX XX XX XX XX XX

From Ancestor B

High error rates hamper assembly process




- PacBio Circular Consensus Sequencing (CCS) resolves errors by sequencing in multiple passes
- HiFi reads: consensus reads >=Q20

# HIFI SOFT WINTER WHEAT GENOME ASSEMBLIES CULTIVARS AGS2000 & HILLIARD

### WHEAT HIFI **ASSEMBLIES HAVE ORDERS OF** MAGNITUDE GREATER CONTIGUITY



Publication

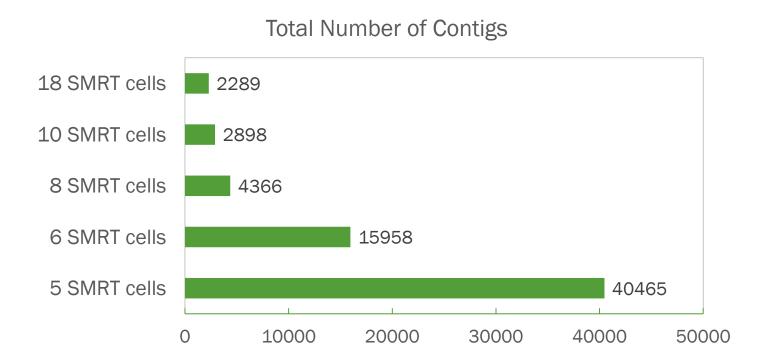




### GENOME ASSEMBLY STATISTICS FOR SWW CULTIVARS 'AGS2000' AND 'HILLIARD'

- Scaffolding with RagTag using reference genome 'Attraktion' <u>Kale et al 2022.</u> ENA accession PRJEB48529.
- 10 SMRT cells yields a high quality assembly.
- Yet, significant improvements in contig N50 and L50 can still be gained with increased sequencing depth.

Sheron Simpson, USDA-ARS GBRU Cal Youngblood, MSU


| Sample                   | AGS2000     | Hilliard |  |  |
|--------------------------|-------------|----------|--|--|
| # SMRT Cells             | 18          | 10       |  |  |
|                          |             |          |  |  |
| PACBIO CCS HIFI DATA     |             |          |  |  |
| Raw Total Yield (Tb)     | 9.42        | 4.92     |  |  |
| Input Coverage (X)       | 35.3        | 19.0     |  |  |
|                          |             |          |  |  |
| RagTag SCAFF             | OLD ASSEMBL | Y        |  |  |
| Scaffold Total Size (Gb) | 14.642      | 14.616   |  |  |
| # Pseudomolecules        | 21          | 21       |  |  |
|                          |             |          |  |  |
| HifiASM CONTIG ASSEMBLY  |             |          |  |  |
| Contig #                 | 2289        | 2943     |  |  |
| Contig N50 (Mb)          | 63.44       | 23.14    |  |  |
| Contig L50 (# contigs)   | 56          | 161      |  |  |
| Contig % in >50 Kb       | 99.74%      | 99.82%   |  |  |

172.19

262.20

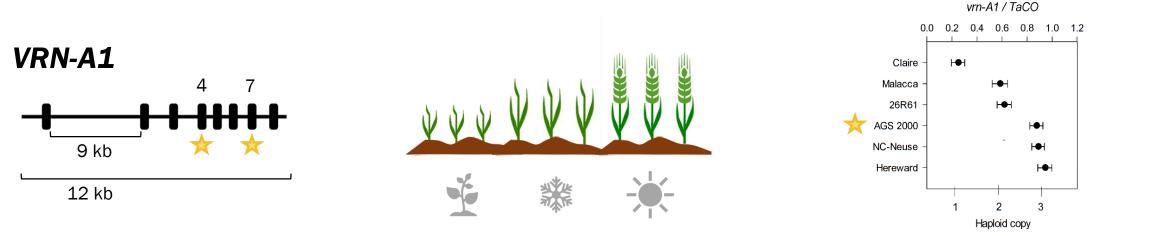
Max Contig Length (Mb)

### WHEAT HIFIASM ASSEMBLY DOWNSAMPLING FROM 'AGS2000'



- HifiASM did not assemble with <5 SMRT cells
- 8 18 SMRT cells covered comparable gene space in BUSCO analysis

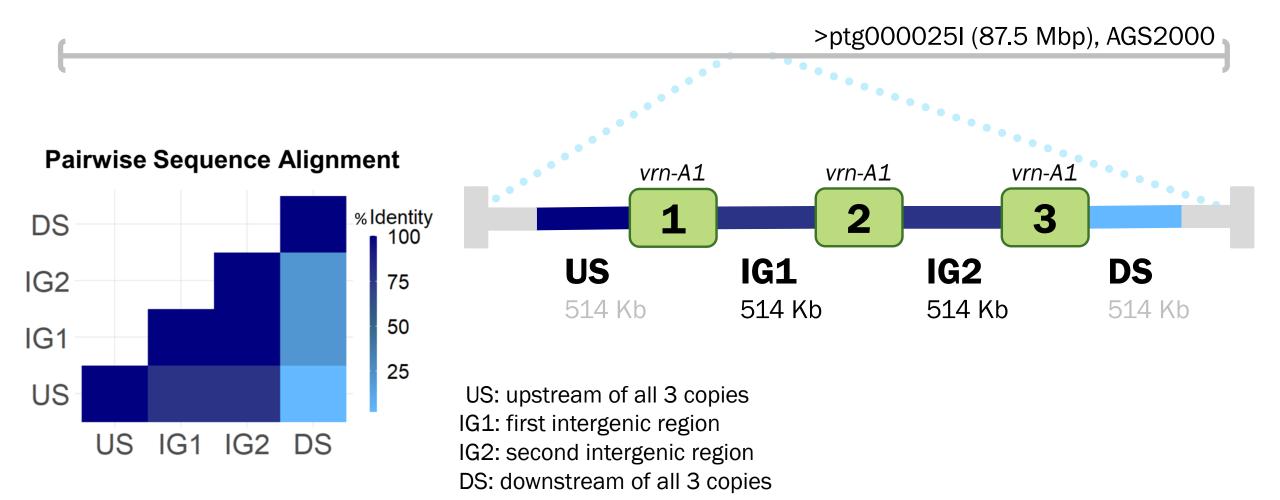
#### BUSCO Genes Duplicated %




| Sample       | AGS2000  | Hilliard |  |  |
|--------------|----------|----------|--|--|
| # SMRT Cells | 18       | 10       |  |  |
| BUSCO v5.2.2 |          |          |  |  |
| Gene set     | poales_o | db10     |  |  |
| Complete %   | 99.4%    | 99.4%    |  |  |
| Single %     | 2.8%     | 2.7%     |  |  |
| Duplicated % | 96.6%    | 96.7%    |  |  |
| Fragmented % | 0.0%     | 0.0%     |  |  |
| Missing %    | 0.6%     | 0.6%     |  |  |
|              |          |          |  |  |

# **COPY NUMBER VARIANT (CNV) DETECTION:** *VERNALIZATION-A1* GENE

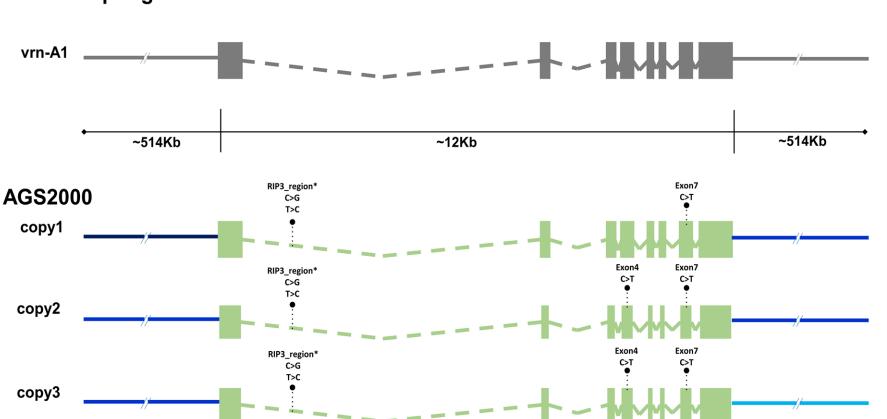
### **VERNALIZATION-A1 (VRN-A1) GENE**


- The large (12 kb) *VRN-A1* gene is a central regulator of flowering in wheat.
- Known 'tandem' copy number variation exists in VRN-A1 (see table).
- Winter wheats most commonly have 3 vrn-A1 copies.
- Increased copies of vrn-A1 are associated with longer vernalization requirement.
- SNP in exons 4 and 7 have been associated with functional outcomes and correlated with copy number.
- The structure of the multi-copy *vrn-A1* region **remains elusive, often collapsed** in assembly.



Vernalization is a response to prolonged cold exposure required for initiation of flowering in winter wheat and other plants.

Copy Number Variation in vrn-A1


## ALL 3 COPIES OF VRN-A1 ASSEMBLED IN A SINGLE 87.5 MB CONTIG REVEALING LARGE (514 KB) INTERGENIC REGIONS



### COMPLETE ASSEMBLY OF VRN-A1 REGION ENABLES VARIANT CALLING AMONG 3 TANDEM COPIES IN 'AGS2000'

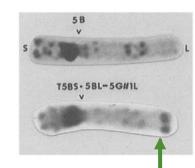
Functional SNP in the 3 *vrn-A1* copies mapped against reference Chinese Spring:

- Intron 1: 2 SNP (C>G;T>C) in GRP3 binding region in all 3 copies
- Exon 4: 1 SNP (C>T) in
  two of the three copies
- Exon 7: 1 SNP (C>T) in all 3 copies



Chinese Spring v2.1

Luis Rivera-Burgos, NCSU

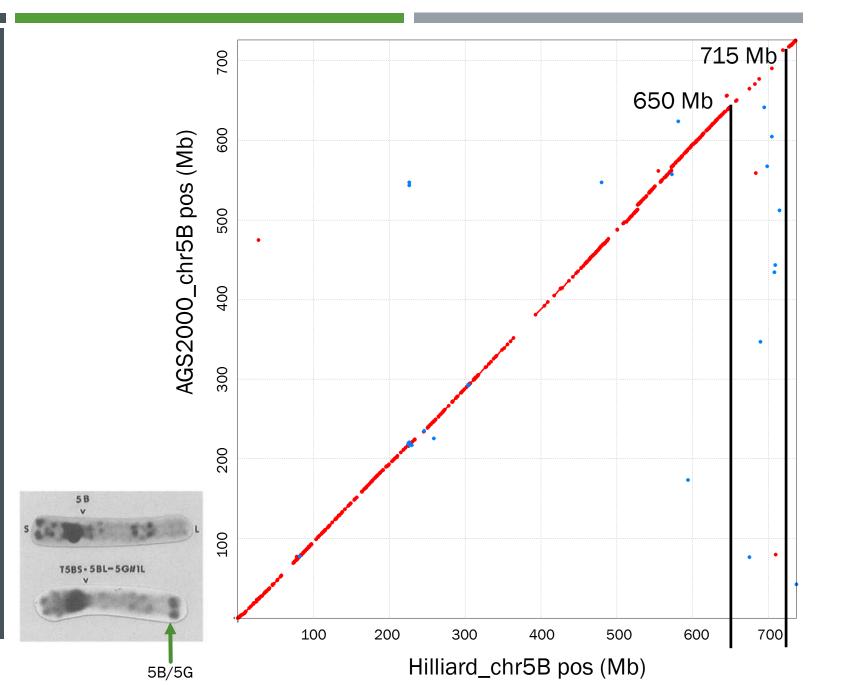

# **STRUCTURAL VARIANT (SV) DETECTION:** CHROMOSOME 5B/5G INTROGRESSION

### CHROMOSOME 5B/5G INTROGRESSION FROM T. TIMOPHEEVII



*Triticum timopheevii* KSU Wheat Genetics Resource Center

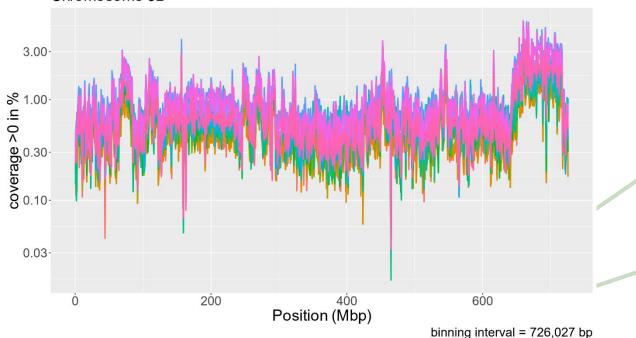
- Triticum timopheevii subsp. timopheevii (2n = 4x = 28, AtAtGG) is a cultivated tetraploid wheat relative native to Iran, Iraq, and Turkey.
- Genome is partially-homologous with *T. aestivum* (2n = 6x = 42, AABBDD)
- Introduced the *Lr18* leaf rust (*Puccinia triticina*) resistance gene into wheat germplasm via introgression on long arm of chromosome 5B.
  - Lr18 introgression is present in cultivar 'Hilliard', not in 'AGS2000.'
  - Lr18 present in 37% of elite lines in 2022 SWW regional nurseries.
- Exact genomic position and extent of the introgression remains unknown.

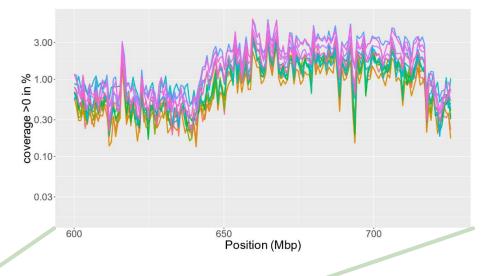



#### C-band staining of chrom 5B

Arrow shows 5G introgression from *T. timopheevii*. Friebe et al. 1996 *Euphytica* **91:** 59-87.

### 5B/5G INTROGRESSION DELINEATION


- MUMMER plot of alignment between chromosomes 5B from 'Hilliard' and 'AGS2000' assemblies
- Alignments filtered to 99%
  identity revealed sequence
  divergence between positions:
  650 Mb 715 Mb
  - This divergent region matches the 5B/5G introgression.
- Interestingly, the terminal sequence remains conserved.

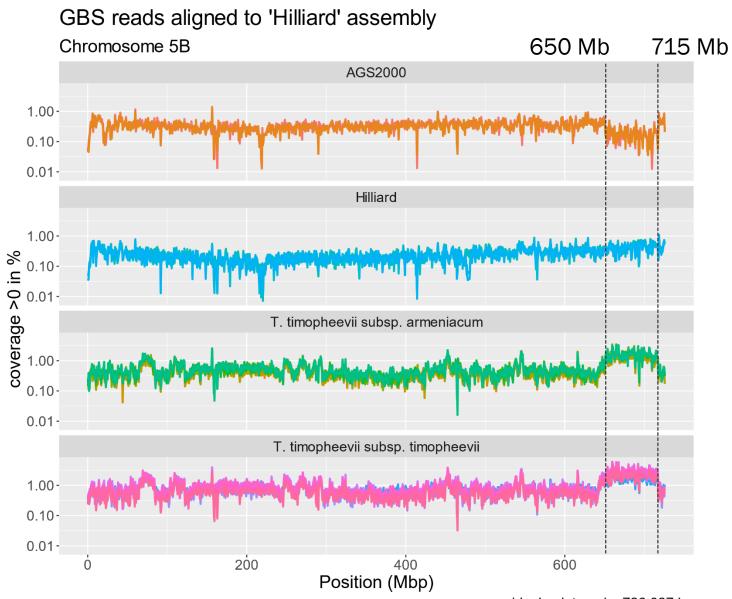



### T. TIMOPHEEVII READ MAPPING COVERAGE ANALYSIS CONFIRMS 5B/5G INTROGRESSION OF APPROX. 65 MB

|               |             | Estimated Start | Estimated End |
|---------------|-------------|-----------------|---------------|
| ~65 Mb        |             | Position (Mb)   | Position (Mb) |
| Introgression | mean (n=12) | 652.2           | 2 715.7       |
|               | Minimum     | 647.3           | 3 714.8       |
|               | maximum     | 653.8           | <u> </u>      |

*Triticum timopheevii* GBS reads aligned to 'Hilliard' assembly Chromosome 5B






Colors represent read mappings from 12 different *T. Timopheevii* accessions genotyped by GBS in Hyun et al. 2020. NCBI Project PRJNA601245.

### COVERAGE ANALYSIS CONFIRMS 5B/5G INTROGRESSION OF APPROX. 65 MB

- Mapping genotyping-bysequencing (GBS) short reads to the 'Hilliard' assembly
- 5B/5G introgression location
  650 Mb 715 Mb supported by:
  - Drop in 'AGS2000' reads mapped
  - 2. Increase in *T. timopheevii* reads mapped from both subspecies *timopheevii* and *armeniacum*

Matthew Willman, NCSU



binning interval = 726,027 bp

### **ACKNOWLEDGEMENTS**

#### Brown-Guedira Lab USDA-ARS Eastern Regional Small Grains Genotyping Lab (ERSGGL), NCSU

Luis Rivera-Burgos

Matthew Willman

Kim Howell

Jared Smith

Joy Horovitz

Nico Lara

Noah DeWitt

Mohammed Guedira

Jo Wood, Wellcome Sanger Institute




#### USDA-ARS Genomics and Bioinformatics Research Unit (GBRU)

Sheron Simpson ► Cal Youngblood, Mississippi State University Amanda Hulse-Kemp Brian Scheffler

#### Hulse-Kemp Lab USDA-ARS GBRU, NCSU

Emily Delorean Keo Corak Ashley Schoonmaker Cassie Newman Grant Billings Heather Manching Jeremy Winders





Small Grains

Genotyping

WHEAT CAP Coordinated Agricultural Project



