### Applying Machine Learning to Plant Literature: Augmenting Human Curation

Tanya Berardini, Ph.D TAIR/Phoenix Bioinformatics





### Problem: Data isolation







### What do we want to know?

- What is known about my gene or gene set of interest?
- Which genes lack information?

# Solution: Capture data in a structured way and interconnect them



Benefits of structured and interconnected data



- Answer questions more easily.
  - What is known about my gene or gene set of interest?
  - Which genes lack information?
  - What are the functions of the genes in my newly sequenced genome?
- structured data, completeness of the answers.

# TAIR's manual literature curation structures data





### What is a Gene Ontology (GO) annotation?



### Potential literature and existing annotations



|                                                         | Arabidopsis | Maize  | Wheat  | Tomato |
|---------------------------------------------------------|-------------|--------|--------|--------|
| 'Gene' publications                                     | 52,000      | 16,000 | 14,000 | 11,000 |
| Experimental Gene<br>Ontology<br>Annotations<br>(AmiGO) | 83,465      | 843    | 65     | 1,257  |

### A. thaliana literature curation 2015-18



### One solution: more curators



### Computational solutions



### Biomedical text mining



- Named entity recognition
  - Detect genes, diseases, ontology terms
- Relation/event extraction
  - Detect and classify semantic relationships between entities
    - PHYB involved in photomorphogenesis
- Document classification
  - Example: Identify drugs used in breast cancer treatment within a large document collection



#### BioCreative

- At least six competitions since 2003
- named entity recognition and entity-fact associations in text
- 2013:
  - Retrieving GO evidence sentences for relevant genes
  - Predicting GO terms for relevant genes
  - Results: "much progress is still needed"



KNOWLEDGE DISCOVERY THROUGH FULL TEXT MINING, CLASSIFICATION AND SEARCHING

- Textpresso: automated information extraction system for mining full text
  - Returns sentences that match search parameters
  - Dictionary based matching
  - Suggested GO annotations

### Text Mining +

- TACC + Oregon State + plant journals
- Entity recognition in submitted manuscripts: Gene names, Plant Ontology terms, chemicals
- Machine Learning to detect possible relationships between detected entities by co-occurrence
- Author approval of extracted entities







## ■ Diffusion of CO Cell Interface in PEP Carboxylas

Hugo Alonso-Cantabrana, Asap Susanne von Caemmerer, Robe Published September 2018. DOI: http

#### **Dive Curated Terms**

The following phenotypic, genotypic, and functional terms are of significance to the work described in this paper:

DCDP CHEBI: CHEBI:28846

HEPES CHEBI: CHEBI:46756

NADPH CHEBI: CHEBI:16474

acetosyringone CHEBI: CHEBI:2404

bundle sheath AmiGo: PO:0006023

callus induction Planteome: TO:0000428

leaf AmiGo: PO:0025034

mesophyll AmiGo: PO:0006070

seed AmiGo: PO:0009010







## What is the next step?



shutterstock.com + 739353402

### Machine Learning (ML)



Adapted from: https://vitalflux.com/wp-content/uploads/2018/02/Screen-Shot-2018-02-04-at-8.09.33-PM.png

### Applications in Daily Life

• Google Photos – upload pictures, identify faces as people, new pictures get labeled with those people's names

- People who bought X also bought Y
  - **:**
- Waze updating routes and arrival time incorporating real time information from users

### Applications in Biology



 Computational identification of DNA sequences that control gene expression



 Identification of adverse hospital events from electronic health records

### How would we use ML?

- Goal: automated GO annotation extraction from published literature
- Input: full text papers
- Output: structured experimental GO annotations



- Start with Arabidopsis
- Populate TAIR, PhyloGenes, GO with the results



### Manual Curation Process





### Curation Process with Machine Learning





### Add Machine Learning and Human-in-the-loop Feedback



### **Curation Process with Machine Learning**



More structured experimental information  $\rightarrow$  better predictions for other plants















Shabari



