No Magic Involved: Chromosome-Scale Sequence Assembly of Wheat Genomes with Open-Source Tools

Martin Mascher

IPK Gatersleben

January 12th, 2019

PLANT GENOMICS

Wild emmer genome architecture and diversity elucidate wheat evolution and domestication

Avni et al., Science **357**, 93–97 (2017) 7 July 2017 7

WHEAT GENOME

Shifting the limits in wheat research and breeding using a fully annotated reference genome

International Wheat Genome Sequencing Consortium (IWGSC), *Science* **361**, eaar7191 (2018) 17 August 2018

Why more wheat genomes?

Worldwide phylogeography and history of wheat genetic diversity

Francois Balfourier, Sophie Bouchet, Sandra Robert, Romain De Oliveira, Helene Rimbert, Jonathan Kitt, Frederic Choulet, International Wheat Genome Sequencing Consortium, BreedWheat Consortium, Etienne Paux

bioRxiv 477455; doi: https://doi.org/10.1101/477455

Why more wheat genomes?

Introducing disease resistance to wheat

Genetic diversity for disease resistance in wheat has been lost through bottlenecks imposed by polyploidization, domestication, and breeding. Resistance genes from wild relatives can be incorporated into elite cultivars by crossbreeding, which is accelerated by speed breeding, and speed cloning with genetic modification (GM).

team is preparing to submit its report to a journal). The sequence was also produced using proprietary software from a company called NRGene, preventing other scientists from reproducing the effort.

NATURE | NEWS Ewen Callaway Nature | doi:10.1038/nature.2017.22924 31 October 2017

All of my concerns have been resolved except the lack of details/code for DenovoMagic. They cite two papers that used it, but that doesn't justify the omission of details needed to reproduce data and analysis results reported in a research paper.

- Reviewer #3

Pipeline for chromosome-scale assembly in the Triticeae

https://triticeae.bitbucket.io

Importance of "long short reads"

fragment length (bp)

Importance of "long short reads"

Assembly results with paired-end and mate-pair data

	Zavitan		Chinese Spring	
	NRGene	IPK	NRGene	IPK
Assembly size	10.5 Gb	11.1 Gb	14.5 Gb	15.7 Gb
Assembly size > 100 kb	10.2 Gb	10.0 Gb	14.2 Gb	14.4 Gb
N50	7.0 Mb	1.3 Mb	7.0 Mb	2.3 Mb
N90	1.2 Mb	97 kb	1.2 Mb	281 kb
Unfilled gaps	171 Mb (1.6 %)	210 Mb (1.9 %)	262 Mb (1.8 %)	476 Mb (3%)

10X Chromium linked-reads improve assembly contiguity

GENOME	Julius		
PKUJELI	NRGene	ІРК	
Assembly size	14.4 Gb	15.7 Gb	
Assembly size > 100 kb	14.2 Gb	14.5 Gb	
scaffold N50		1.8 Mb	
scaffold N90		253 kb	
super-scaffold N50	38 Mb	31 Mb	
super-scaffold N90	6.5 Mb	1.6 Mb	
Unfilled gaps	164 Mb (1.1 %)	612 Mb (4.0%)	

Hi-C for pseudomolecule construction

Hi-C for assembly validation and correction

Gene space representation

transcripts	Ν	assembly	% aligned
IWGSC RefSeqV1	269,583	NRGene	98.2%
IWGSC RefSeqV1	269,583	ІРК	97.5%
IWGSC RefSeqV1	269,583	TGAC	89.7%
IWGSC RefSeqV1	269,583	Zimin et al.	89.7%
Riken full-length cDNAs	6,137	NRGene	96.3%
Riken full-length cDNAs	6,137	ІРК	97.1%
Riken full-length cDNAs	6,137	TGAC	91.6%
Riken full-length cDNAs	6,137	Zimin et al.	85.4%

A reference genome for Aegilops sharonensis

- Cost for data collection per diploid genome: USD 50,000
- Cost for IT infrastructure: USD 50,000 (32 cores, 1 TB RAM, 3 TB disk space)
- Computationally skilled postdoc: USD 70,000 per year
- Time for computation: one month six weeks per genomes
 - ► Ae. sharonensis: first dataset arrived on Oct 2, pseudomolecules finished on Dec 20

 Updated barley reference genome and prospects of pan-genomics in barley

> Cécile Monat, Triticeae I, today, 11:20, Town & Country Martin Mascher, Sequencing Complex Genomes, tomorrow, 16:00, Golden Ballroom

- Chromosome-scale assembly of rye Tim Wallace, Triticeae I, today, 10:30, Town & Country
- Wheat 10+ Genomes Project
 Curtis Pozniak, Triticeae I, today, 10:55, Town & Country

Acknowledgements

Bioinformatics at IPK

Uwe Scholz Heiko Miehe Jens Bauernfeind Thomas Münch Sebastian Fricke

Barley and wheat genomics at IPK

Nils Stein Cécile Monat Sudharsan Padmarasu Axel Himmelbach Ines Walde Manuela Knauft

Fe of an

Federal Ministry of Education and Research

Federal Ministry of Food and Agriculture

10X data

Curtis Pozniak Jennifer Ens

Aegilops sharonensis genomics

Brande Wulff Guotai Yu Burkhard Steuernagel Jonathan Jones Raz Avni Hanan Sela Anna Minz Amir Sharon Istvan Molnar Jaroslav Dolezel

Institute of Experimental Botany of the AS CR, v. v. i.

Come visit IPK!

Gatersleben Research Conference - Applied Bioinformatics for Crops

18 - 20 March, 2019

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben // DE

Anne-Françoise Adam-Blondon INRA, Versailles- Grignon, FR

Björn Grüning Bioinformatics, University Freiburg, DE

Andrea Bräutigam Computational Biology, University Bielefeld, DE

Barend Mons GO FAIR International Support and Coordination Office, Leiden, NL

Oliver Ebenhöh Heinrich-Heine-University, Düsseldorf, DE

Zoran Nikoloski MPI of Molecular Plant Physiology, Golm, DE

🎔 Follow

@GRC2019

https://meetings.ipk-gatersleben.de/grc2019-abc/

- Image-Based Data Analyses & Data Visualization
- Distributed Computing, Tools and Infrastructures
- Systems Biology & Modeling
- Biodiversity & Information Systems
- Breeding Informatics

Richard Finkers Wageningen University & Research, NL

Kelly Robbins Cornell University, USA

Malia Gehan Danforth Center, St. Louis, USA

Sotirios Tsaftaris University of Edinburgh, UK

- 1. PE450, PCR free, 2 \times 250 bp, \geq 70x coverage
- 2. (PE800, PCR free, 2 \times 150 bp, $\geq\!30x$ coverage)
- 3. MP (2-4kb), (5-7 kb), 8-10 kb, Nextera, 2 \times 150 bp, each ${\geq}30x$ coverage
- 4. Two (one) 10X Chromium libraries sequenced to 30x read coverage (2 \times 150 bp reads)
- 5. 1 Hi-C library, 200 M 400 M read pairs
- 6. Low density genetic map (GBS / SNP chip)