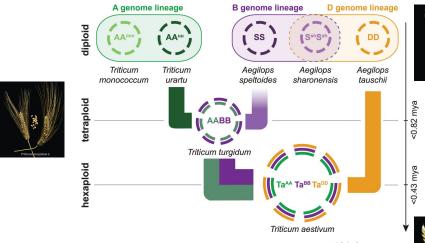
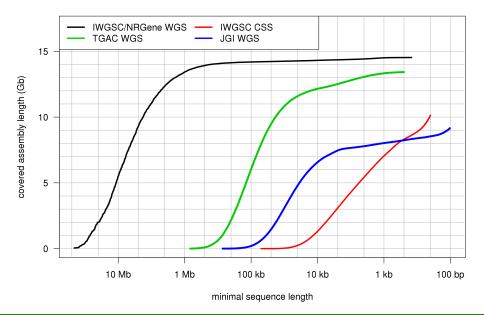
Conservation and rearrangement: gene order in peri-centromeric regions of Triticeae genomes

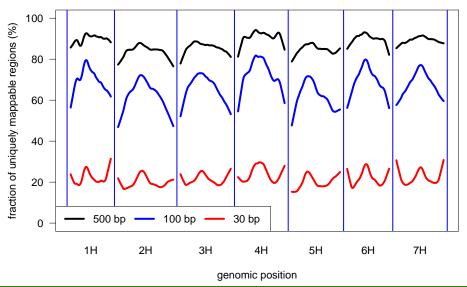
Martin Mascher


IPK Gatersleben

April 13th, 2016

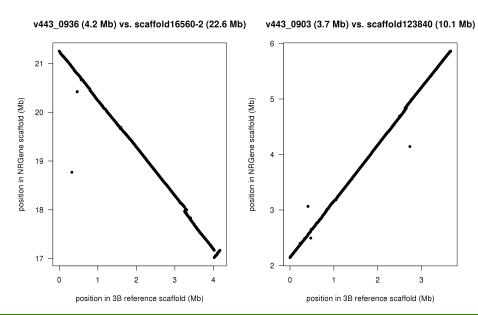

The polyploid wheat genome

IWGSC, Science, 2014

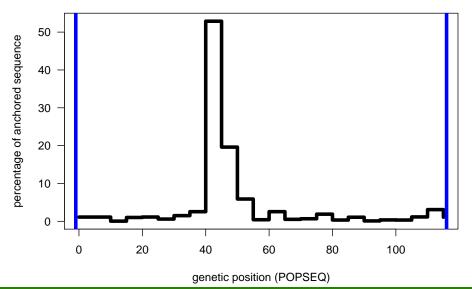

▶ Genome size: \sim 15 - 17 Gb, 3 imes 7 pairs of chromosomes

Excellent contiguity and genome representation

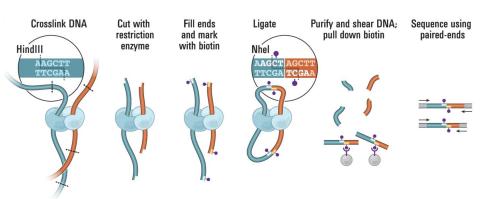
Longer read lengths improve assembly completeness


Uniquely mappable regions as a function of k-mer/read length

Two wheat assemblies

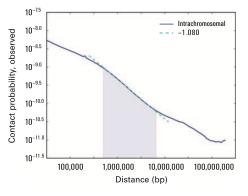

	Bread wheat	Wild emmer
ploidy	6x (AABBDD)	4x (AABB)
genome size	\sim 15 – 17 Gb	\sim 10 – 12 Gb
assembly size	14.5 Gb	10.5 Gb
N50	548 (7.4 Mb)	415 (7.0 Mb)
N90	2,276 (1.3 Mb)	1,828 (1.2 Mb)
genetically anchored	14.0 Gb (96.5 %)	10.1 Gb (95.6 %)

Alignment of the BAC-based reference of 3B

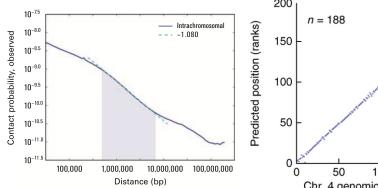


POPSEQ cannot order contigs in peri-centromeric regions

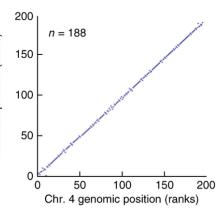
Anchored sequence along the genetic map



HiC: chromosome conformation capture sequencing

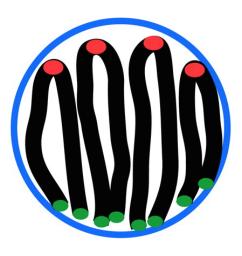

Lieberman-Aiden et al., 2009

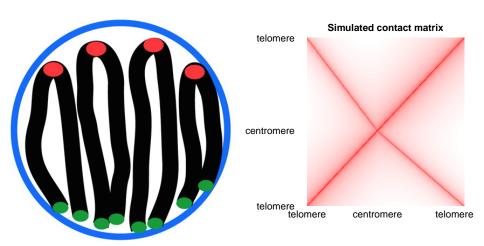
Mapping the linear genome with 3D contact matrices



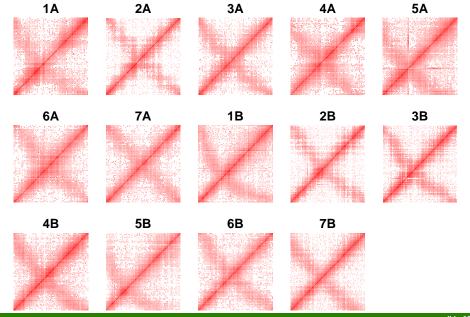
Lieberman-Aiden et al., 2009; Kaplan and Dekker, 2013

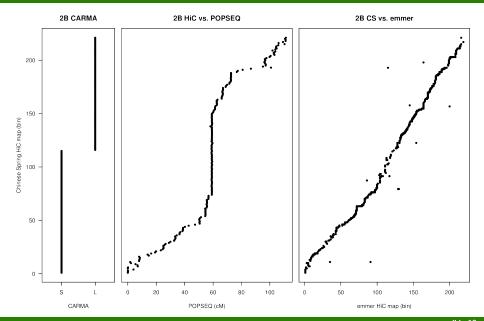
Mapping the linear genome with 3D contact matrices

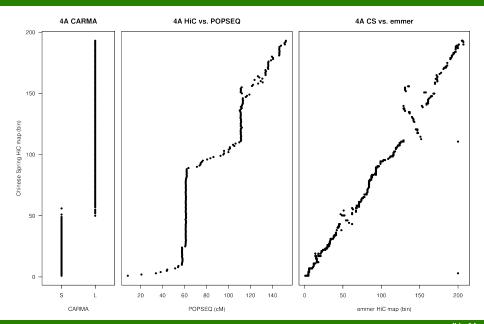

Lieberman-Aiden et al., 2009; Kaplan and Dekker, 2013

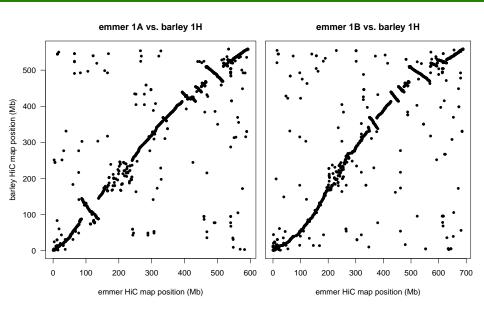

HiC maps of bread wheat and emmer

	Bread wheat	Wild emmer
assembly size	14.5 Gb	10.5 Gb
# HiC links	3.7 M	6.5 M
ordered by HiC	14.0 Gb (96.3 %)	10.1 Gb (96.0 %)
oriented by HiC	_	9.7 Gb (92.5 %)
# scaffolds per chr.	177	199


Rabl configuration of interphase nuclei


Rabl configuration of interphase nuclei


HiC contact matrices meet the expectations


Colinearity of the HiC maps of bread wheat and emmer

Large inversions and reduced recombination

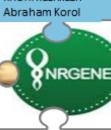
Centromeric rearrangements between wheat and barley

Outlook

- Improved HiC map of bread wheat and construction of pseudomolecules
- NRGene assembly and HiC map of durum wheat
- HiC maps for other wheat varieties to find large structural variants (inversions, deletions, insertions)

Bread wheat assembly team

- Curtis Pozniak, Andy Sharpe, University of Saskatoon
- ▶ Jesse Poland, Kansas State University
- Assaf Distelfeld, Tel Aviv University
- Gil Ronen, Omer Barad, Kobi Baruch, NRGene
- Mike Thompson, Illumina
- Fred Choulet, INRA
- Jane Rogers, Kellye Eversole, IWGSC
- ▶ Nils Stein, Axel Himmelbach, Ines Walde, IPK Gatersleben


Wild Emmer Wheat Sequencing consortium (WEWseq)

Justin Faris Assaf Distelfeld NilsStein Kobi Baruch Tago Hale Gil Ronen Axel Himmelbach Omer Barad Gil Alvaro Hernandez Raz Avni Jan Dvorak Ben-Zvi Sven Twardziok Roi Ben-David Tamar Eilam Heidrun Gundlach Tzion Fahima Hikmet Budak Martin Mascher Kha Lil Kashkush Jasline Deek

Batsheva Ben-Zvi

AvrahamLevy
GuyGolan
Zvi Peleg
Curtis Pozniak
Silvio Salvi
Ines Walde

Moran Nave

Marco Maccaferri Klaus Mayer Mark Mikel Amir Sharon Brian Steffenson

Roberto Tuberosa

Hanan Sela

