
HYBRID ASSEMBLY OF THE ANCESTRAL WHEAT Ae. tauschii 4.25Gb GENOME

Aleksey Zimin^{*}, Guillaume Marcais, Daniela Puiu, Steven Salzberg and James Yorke, et al.

University of Maryland, Johns Hopkins University

Aegilops tauschii is one of the progenitors of common wheat

 Aegilops tauschii sequence provides a reference for study of polyploid genome evolution by facilitating comparison of the wheat D-genome and Ae. tauschii genomic sequences

Dominant Sequencing technologies

Illumina

Cheap: as low as \$5K for de novo mammalian genome
 Accurate - 1-2% error rate
 Only 150 to 350 bp reads, almost all paired

PacBio

Inexpensive: \$100k+ for a mammalian genome
High error rate ~15%
Random sequence insertions, chimeric reads
We get on average ~10000 bp reads

Data for A. tauschii assembly

WGS Illumina data and Pacbio

Data used for the hybrid assembly:

- 62x WGS coverage by 2x250bp Illumina Paired end reads
 - ► 450bp fragment size
- ▶ 35x WGS P6C4 Pacbio reads, ~10Kb N50 size

Definitions

Read, super-read, mega-read

Read

a fragment of genome sequence read by a sequencing machine

- 100-250bp long for Illumina sequencing
- Super-read
 - a synthetic read produced by extending Illumina read(s) by using k-mer graph;
 - typically several reads extend to the same super-read
 - ▶ 400-2000 bp average length

Mega-read

- a synthetic read produced by merging super-reads with exact sequence overlaps guided by a template long read (Pacbio read)
- ▶ 5000-8000 bp average length

Advantages of our hybrid approach

- We aim at producing long near-perfect "mega-reads" from the Pacbio SMRT reads
- We pre-process the Illumina reads to form Super-reads:
 - Much longer average >500bp
 - 2-3x overlapping genome coverage
 - Exact k-overlaps (usually min 69+bp) known
- Require only ~10-20x coverage of Pacbio reads and 50x-100x Illumina 150-250bp reads
- Can preserve and resolve haplotype information based on the <u>accurate</u> Illumina and <u>long</u> Pacbio reads
- Relatively inexpensive computationally (less than 1 month on 48-core 512Gb computer for 3Gb genome).

Preliminary Assembly results

	The First Preliminary Result	My Goal
Assembled sequence	3.98Gbp	4.2Gbp
N50 contig size	242Kbp	~400Kbp
N50 scaffold size	252Kbp	

In every project we <u>always</u> run assembly more than once to achieve the best result

Overview of the MaSuRCA mega-reads technique

Efficient error correction of the PacBio reads

We use every single PacBio read as a template

Find the best tiling of each Pacbio read with the super reads to produce accurate mega-reads

Assemble the mega-reads + the other data with Celera Assembler 8.3

Optional: Post-process to resolve (unzip) haplotypes

MaSuRCA mega-reads 3.2.x

The mega-reads technique was developed by our group at the University of Maryland and added to the MaSurca assembler. Available now for beta-testing from us <u>http://www.genome.umd.edu</u>, by request.

Design aimed at large genomes

The latest version can assemble mammalian genome in ~1 month on one 48-core computer

We are using it to assemble 22Gbp genome of Loblolly pine, 2.8Gbp cow genome, and 1Gb Manakin genome (in collaboration with Smithsonian Institution)

Mega-read sizes

Three hybrid data sets

Data set	Pacbio N50 sub- read size (Kb)	Mega-read N50 read size (Kb)
Ae. tauschii, 35x	11.5	9.2
S.cerevisiae (yeast), 20x	11.6	9.3
Drosophila pseudoobscura, 20x	8.4	6.9
Manacus vitellinus, 10x	18.0	12.3

Total size of Pacbio reads was used for N50

Mega-reads N50 length is up to 80% of the Pacbio N50 length

MaSuRCA performance on PacBio Hybrid data

Results on S. cerevisiae W303 data set

Assembler	Input data	Aligned NGA50	Structural mis-
		Contig Kb)	assemblies
REFERENCE	40x 454 Sequencing	924	N/A
HGAP	237x PacBio	809	4
ECTools	20x PacBio + 100x MiSeq	401	9
PacBioToCA	20x PacBio + 100x MiSeq	320	15
MaSuRCA Mega-reads	20x PacBio + 100x MiSeq	804	3

MaSuRCA performance on PacBio Hybrid data

Faux haplotype experiment - in development

- We created faux haplotype data set of 100x Illumina + 20x Pacbio for the yeast (S. cerevisiae)
 - Create modified version of the finished sequence by introducing SNPs
 - Split Illumina and Pacbio reads into 2 groups and introduce SNPs into one group based on alignment to the finished sequence (where the matches are)
 - Assemble, and then separate (unzip) the haplotypes
 - Use for development and validation

Assembler	Haplotype difference rate	Aligned NGA50 Contig Kb)
REFERENCE	N/A	924
MaSuRCA Mega-reads	N/A	793
MaSuRCA Mega-reads Haplotype resolved	1%	268
MaSuRCA Mega-reads Haplotype resolved	0.1%	250

A key idea used in the assembly

Based on the observation that most of the sequence in genomes is *locally* unique – branches are relatively rare

Consider 10-mers (we use much longer k of course): AGCTGACTGACTGGTAACAA AGCTGACTGA GCTGACTGAC

The idea is to make reads longer instead of breaking them into k-mers.

Extending a read to become a super-read

Consider a read - can its ends be extended uniquely?

ACTGACCAGATGACCATGACAGATACATGGT

extend 5 GACTGACTGG

CTGACTGGTA 10 stop

CTGACTGGTC 2

Typically Illumina sequencing projects generate data with high coverage (>50x). With 100bp reads this implies that a new read starts on average at least every other base:

read R extended to super read S (red)

Extending a read to become a super-read

Consider a read - can its ends be extended uniquely?

GACTGACCAGATGACCATGACAGATACATGGT

extend 5 GACTGACTGG

CTGACTGGTA 10 stop

CTGACTGGTC 2

Typically Illumina sequencing projects generate data with high coverage (>50x). With 100bp reads this implies that a new read starts on average at least every other base:

read R extended to super read S (red)

Super reads

We can keep Extending on the left

Consider a read

CGACTGACCAGATGACCATGACAGATACATGGT stop

extend 5 GACTGACTGG

CTGACTGGTA 10 stop

extend 3 CGACTGACTG

CTGACTGGTC 2

Typically Illumina sequencing projects generate data with high coverage (>50x). With 100bp reads this implies that a new read starts on average at least every other base:

read R extended to super read S (red)

We can keep Extending on the left

Consider a read

CGACTGACCAGATGACCATGACAGATACATGGT sto

extend 5 GACTGACTGG

CTGACTGGTA 10 stop

extend 3 CGACTGACTG

CTGACTGGTC 2

Typically Illumina sequencing projects generate data with high coverage (>50x). With 100bp reads this implies that a new read starts on average at least every other base:

read R extended to super read S (red)

Super reads

Extend, stopping at the next branch (or where there is no data)

Consider a read

CGACTGACCAGATGACCATGACAGATACATGGT stop

extend 5 GACTGACTGG

CTGACTGGTA 10 stop

extend 3 CGACTGACTG

CTGACTGGTC

Typically Illumina sequencing projects generate data with high coverage (>50x). With 100bp reads this implies that a new read starts on average at least every other base:

read R extended to super read S (red)

Overview of the mega-reads technique

Efficient error correction of the PacBio reads

- We use every single PacBio read as a template
 - Map (approximately) super-reads to PacBio reads
 - Exact overlaps between the super reads confirmed by mapping = proper overlaps
 - Mega-read is a properly overlapping contig of super-reads that matches the PacBio read best
 - If more than one mega-read tiling the pacbio read then join (or not) with pacbio sequence
- Assemble the corrected reads + the other data with Celera Assembler 8.3
- Post-process to resolve (unzip) haplotypes

Overview of the mega-reads technique

Matching super reads, letters represent segments of k-mer graph

> C_D_F H_I_J E_D_F H_I_K M_N_O_P B_C_D F_I_H K_L_M_N A_B_C F_G_H

> > PacBio read

Overview of the mega-reads technique

Matching super reads, letters represent segments of k-mer graph, path indicated in red

> C_D_F H_I_J E_D_F H_I_K M_N_O_P B_C_D F_I_H K_L_M_N A_B_C F_G_H

> > PacBio read yields mega-read A_B_C_D_F_I_H_I_K_L_M_N_O_F

More than one mega-read tiling a Pacbio read

Some Pacbio reads yield more than one covering megaread with a gap in corrected coverage

- Insertions in Pacbio reads
- Chimeric Pacbio reads
- Repeats
- Missing Illumina coverage
- We use super reads to decide whether we can use raw Pacbio sequence to join the covering mega-reads
- Each join must be in 2+ reads -- same flanking superreads

Progress towards WGS PacBio/Illumina hybrid assembly of the Chinese Spring genome

- Doubled haploid Chinese Spring wheat (accession Dv418)
- 33X wheat genome equivalents of PacBio WGS long and superlong reads (Dv418)
- 50X wheat genome equivalents of Hiseq 3000 150bp pairend reads (Dv418)
- 50X wheat genome equivalents of Hiseq 2500 250bp pairend reads (Dv418)

Summary

Mega-reads benefit from the accuracy of Illumina and the length of the Pacbio reads

The goal is to assemble haplotype-resolved mammaliansize genome in 2-3 weeks on a single 64-core computer

Up to 30Gbp genome on a computer with 1Tb of RAM

MaSuRCA 3.2.x to be released in 2016

Acknowledgements

Funding agencies

- USDA
- ► NIH
- NSF

