Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ)

Martin Mascher

IPK Gatersleben

PAG XXII

January 14, 2012

Proof-of-principle in barley

- Diploid model for wheat
- ▶ 5 Gb genome, 80 % repetitive
- genome sequencing in progress
- physical map published last year

 A physical map consisting of 9,265 BAC contigs was constructed.

- A physical map consisting of 9,265 BAC contigs was constructed.
- ► More than 300,000 BACs were end sequenced and ≈ 6,300 clones were fully sequenced.

- A physical map consisting of 9,265 BAC contigs was constructed.
- ► More than 300,000 BACs were end sequenced and ≈ 6,300 clones were fully sequenced.
- Short read data was assembled into more than 350,000 contigs larger than 1kb.

- A physical map consisting of 9,265 BAC contigs was constructed.
- More than 300,000 BACs were end sequenced and ≈ 6,300 clones were fully sequenced.
- Short read data was assembled into more than 350,000 contigs larger than 1kb.
- 4,556 BAC contigs were anchored to a chromosomal location with genetic markers.

chr. 5H. 120 cM chr. 2H. 40 cM A physical map consisting marker of 9,265 BAC contigs was constructed. More than 300,000 BACs BAC contias were end sequenced and \approx 6,300 clones were fully sequenced. BAC / BES Short read data was assembled into more than 350,000 contigs larger than 1kb. WGS contig 4,556 BAC contigs were anchored to a chromosomal location with Genes genetic markers.

 Only 410 Mb could be positioned in the physical framework.

no. of contigs	2.7 million			
cumulative length	1.6 Gb			
mean contig length	700 bp			
no. contigs > 1 kb	376,261			
lengh of contig > 1 kb	1.1 Gb			
N50	1,425 bp			

- Only 410 Mb could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.

no. of contigs	2.7 million			
cumulative length	1.6 Gb			
mean contig length	700 bp			
no. contigs $> 1 kb$	376,261			
lengh of contig > 1 kb	1.1 Gb			
N50	1,425 bp			

- Only 410 Mb could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.
- Next-generation sequencing has been used in rice and fruit fly for genotyping. Marker order was derived from a high quality reference genome.

no. of contigs	2.7 million
cumulative length	1.6 Gb
mean contig length	700 bp
no. contigs $> 1 \text{kb}$	376,261
${\sf lengh} \ {\sf of} \ {\sf contig} > 1 {\sf kb}$	1.1 Gb
N50	1,425 bp

- Only 410 Mb could be positioned in the physical framework.
- The number of genetic markers limits anchoring efficiency.
- Next-generation sequencing has been used in rice and fruit fly for genotyping. Marker order was derived from a high quality reference genome.
- Idea: use whole genome sequencing for genotyping to establish marker order from sequencing data

Barley POPSEQ populations

- 90 Morex × Barke (M×B) RILs
 - Parents of the current barley reference population

Barley POPSEQ populations

- 90 Morex × Barke (MxB) RILs
 - Parents of the current barley reference population
- ▶ 82 Oregon Wolfe Barley (OWB) DH lines
 - progeny from a cross between dominant and recessive marker stocks

from Oregon State University

Sequencing the populations

- \blacktriangleright WGS resequencing of Morex \times Barke and OWB
- Read mapping and SNP calling with BWA/samtools pipeline

	MxB WGS	OWB WGS			
Population	$Morex\timesBarke$	Oregon Wolfe Barleys			
	RIL F8	DH			
Seq. technology	WGS; Hiseq 2000	WGS; Hiseq 2000			
No. of lanes	12	12			
No. of individuals	90 (+parents)	82 (+parents)			
Coverage per sample	$\sim 1 x$	$\sim 1 x$			
No. of SNPs	5.1 M	6.5 M			

 Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)

- Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)
- A high-density genetic map ("iSelect map") had been constructed through array-based genotyping of 360 M×B RILs (Comadran et al., Nat. Genet., 2012)

- Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)
- A high-density genetic map ("iSelect map") had been constructed through array-based genotyping of 360 MxB RILs (Comadran et al., Nat. Genet., 2012)
- SNP and associated WGS contigs were placed into this framework though nearest neighbor search

RIL# 1 2 3 4 5 6 7 8 9 10

SNP on WGS contig A G A A G G A A G G

- Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)
- A high-density genetic map ("iSelect map") had been constructed through array-based genotyping of 360 M×B RILs (Comadran et al., Nat. Genet., 2012)
- SNP and associated WGS contigs were placed into this framework though nearest neighbor search

RIL #	1	2	3	4	5	6	7	8	9	10	
SNP on WGS contig	A	G	A	A	G	G	A	A	G	G	
framework SNP	Α	G	A	A	G	G	A	A	G	G	

- Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)
- A high-density genetic map ("iSelect map") had been constructed through array-based genotyping of 360 M×B RILs (Comadran et al., Nat. Genet., 2012)
- SNP and associated WGS contigs were placed into this framework though nearest neighbor search

- Annotated WGS contigs of cultivar 'Morex' are available (IBSC, Nature, 2012)
- A high-density genetic map ("iSelect map") had been constructed through array-based genotyping of 360 M×B RILs (Comadran et al., Nat. Genet., 2012)
- SNP and associated WGS contigs were placed into this framework though nearest neighbor search

 Consistency criteria when there are multiple nearest framework markers

	MxB WGS	IBSC
Framework map	iSelect	iSelect
No. of SNPs used for anchoring	4,381,020	498,165
No. of anchored contigs	498,856	138,443
Size of anchored contigs	927 Mb	410 Mb
	(50%)	(21%)
No. of anchored HC genes	16,682	14,923
	(64%)	(57%)

Collinearity between POPSEQ and IBSC anchoring

POPSEQ anchoring

▶ 91 % agreement

Collinearity between POPSEQ and IBSC anchoring

- ▶ 91 % agreement
- 95 % of contig pairs on the same BAC are anchored within 3 cM

POPSEQ anchoring

	M×B WGS	OWB WGS
No. of SNPs used for anchoring	4,381,020	6,072,994
Framework map	iSelect	OWB GBS
No. of anchored contigs	498,856	584,806
Size of anchored contigs	927 Mb	978 Mb
	(50%)	(52%)
No. of anchored HC genes	16,682	15,171
	(64%)	(58%)

- framework: OWB GBS map
- ▶ 93.2 % agreement between maps

 Combination of Morex × Barke and OWB results to compensate for regions that are non-polymorphic in one population

	$MxB + OWB \; WGS$	IBSC
No. of SNPs used for anchoring	11,229,709	498,165
Framework map	$iSelect/OWB\ GBS$	iSelect
No. of anchored contigs	747,077	138,443
Size of anchored contigs	1,222 Mb (65%)	410 Mb (21%)
No. of anchored HC genes	20,932 (80%)	14,923 (57%)

 Three times more anchored WGS contigs compared to the physical and genetic framework

What can POPSEQ do for you?

- Genetically anchored gene-space assembly from cheap NGS reads
- No need for physical mapping and long sequence contigs
- Independent of prior genomic resources

What can POPSEQ do for you?

- Genetically anchored gene-space assembly from cheap NGS reads
- No need for physical mapping and long sequence contigs
- Independent of prior genomic resources
- Can be applied to other (crop) species (wheat, rye, orphan crops, wild relatives)

Images from Wikipedia

	BAC contigs	sequenced clones
POPseq data	M x B + O W B	M x B + O W B
# all contigs	9,265	6,278
# with WGS contigs	5,872	6,243
# with anc. WGS contigs	5,720	6,189
# anchored	5,193	5,591
length	3.95 Gb	703 Mb

 POPSEQ can assign additional physical contigs to chromosomes to assist MTP sequencing

Challenges and limitations

genetic to physical distance in barley

relative physical position along the chromosome (%)

POPSEQ relies on recombination

POPSEQ relies on recombination

- POPSEQ relies on recombination
- Assembly quality (contig size and number)

- POPSEQ relies on recombination
- Assembly quality (contig size and number)
- Current sequencing costs limit sequencing depth, population size and mapping resolution

2

20

40

e.

no. of present genotype calls

80

Acknowledgements

- Nils Stein
- Uwe Scholz
- Axel Himmelbach
- Ruvini Ariyadasa

GEFÖRDERT VOM

für Bildung und Forschung

- Robbie Waugh
- Gary Muehlbauer
- Jesse Poland
- Dan Rokhsar
- Jarrod Chapman
- Jeremy Schmutz
- Kerrie Barry
- María Muñoz-Amatríain
- Klaus Mayer
- Alan Schulman
- Tim Close
- ► Roger Wise