Excerpts from a Seminar at Bayer CropScience February 2015

Kellye Eversole

IWGSC Executive Director

Seminar Ghent, Belgium 12 February 2015

Update on the International Wheat Genome Sequencing Consortium (IWGSC): Strategies and Resources

Kellye Eversole

IWGSC Executive Director

Seminar Ghent, Belgium 12 February 2015

2005

2 sponsors3 institutes

5 members3 countries

The IWGSC, Inc.

22 sponsors1,481 members and data usersMore than 270 institutes64 countries

2015

Members

Role: Participation & Input

Members: Open to Anyone

Vision

Goal

- Lay a foundation to accelerate wheat improvement
- Increase profitability throughout the industry

Vision

- High quality annotated genome sequence, comparable to rice genome sequence
- Physical map-based, integrated and ordered sequence

6

Challenges for the world's food crops

Sustainably provide sufficient quantity of high quality food

- Decreasing annual yield growths and agricultural productivity
- More frequent periods of extreme weather patterns
- A general increase in global temperatures

Crop improvement is complex

Yield potential and yield stability

- √ Photosynthesis efficiency
- √ Harvest Index
- √ Reduced inputs (fertilizers, pesticides..)

Adaptation to climate change

- ✓ Avoidance
- √ Tolerance (Drought, heat, cold..)
- ✓ Post stress recovery...

Durable resistance to biotic stress

- ✓ Usual suspects (virus, fungi)
- ✓ New pests and diseases
- ✓ Invasive species

Quality of grain and co-products

- ✓ Grain protein content
- √ Starch, straw
- ✓ Food safety Allergenicity-mycotoxin contamination....

How to produce a useful sequence?

Key Considerations

- A genome sequence is only a tool
- What kind of sequence?
- For whom and for what purposes?
 - Comparative genomics
 - Markers
 - Gene cloning
 - Development of new varieties
 - Long-term breeding pipelines
- Goal Optimize the cost/quality ratio to deliver a useful tool

How to produce a useful sequence?

1-Sequence what grows in the fields! -> bread wheat

2- A sequence linked to the genetic maps and phenotypes

Faster and cheaper methods to tackle the wheat genome

http://flxlexblog.wordpress.com/2012/12/03/developments -in-next-generation-sequencing-a-visualisation/

Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI www.genome.gov/sequencingcosts.

Which Way for Wheat...

Two possible approaches

BAC by BAC vs WGS

The bread wheat genome is.....a challenge

Managing the 17 Gb, Hexaploid Genome

Chromosome genomics

> Chromosome specific BAC libraries and sequencing

Roadmap to the Wheat Genome Sequence

A reference sequence anchored to the genetic and phenotypic maps

IWGSC Strategy for a Reference Wheat Genome Sequence

6. Automated and curated annotation

IWGSC Projects

The Annotated Reference Sequence of the Bread Wheat Genome

Pseudomolecules (1 of 21 completed)

Chromosome Shotgun Sequences and marker alignment (completed)

Physical Maps (16 of 21 completed; 5 almost finished)

Wheat Chromosome Physical Maps

Physical maps (of varying quality) have been constructed for all chromosomes. 5 maps are being improved.

IWGSC Chromosome Shotgun Sequencing Initiative

HelmholtzZentrum münchen

German Research Center for Environmental Health

Amplified DNA-sorted individual chromosomes

~50X Illumina sequence

Chromosome arm sequence assemblies

Read/assembly alignment to chromosome

Gene modeling, virtual ordering (GZ), annotation, functional, structural analyses

Composition and Evolution of the 21 Bread Wheat Chromosomes

A, S, D, & **AB** genomes (7)

>30X Illumina sequence

arms

The clusive dream of regenerating the heart p. 252

Summer selections for your reading pleasure p. 258

Mesoscale eddies help drive ocean circulation (8.302)

Science 180 18 ALY 2014 ALY

Slicing the wheat genome

Sequencing illuminates bread wheat evolution and breeding potential p. 285

IWGSC Chromosome Survey Sequence Data

- Sequence assemblies for 40 chromosome arms + chromosome 3B
 - ❖ Total length 10.2 Gb
 - ❖ 128Mb (1DS) 639Mb (3B) assembled sequence per chromosome
 - ❖ N50 contig length after repeat masking = 6.1kb (1.7kb-8.9kb)
- Annotation (RNASeq, FLcDNA, grass genomes): 124,201 allocated to chromosomes

IWGSC Chromosome Survey Sequencing - Summary

- Almost full wheat gene complement identified and allocated to chromosome arms
- On average, 53% of genes <u>virtually</u> ordered along chromosomes
- High level of inter- and intrachromosomal duplication
- Over 3.5 M markers mapped to contigs (1.3M wheat markers + 2.3M SNPs) - SSR, EST, DArT, SNP (90k) markers...
- 13.2 million SNPs from POPSeq aligned to contigs

Sequencing the hexaploid wheat chromosome 3B

The 3B reference sequence: an enabling tool to discover, understand, and apply

3B Reference is facilitating map-based cloning

40 genes and QTL mapped on 3B

 \rightarrow 4722 markers on 3B consensus map, 3102 in 964 SC (679 Mb =82 % of the sequence)

→13 map-based cloning projects

- Disease resistance genes (Sr, Lr, Yr, Stb...)
- Solid stem (saw fly)
- > Yield
- Drought tolerance
- Boron transporter
- Flowering time
- > NUE
- Chromosome pairing...

A useful genome sequence: Wheat 3B

- Unlimited markers
- Efficient gene cloning
- Pre-breeding
- Precision breeding
- Shortens time to market
- Improves seed value capture

IWGSC Resources

All resources accessible at URGI, Versailles

http://wheat-urgi.versailles.inra.fr/Seq-Repository/

- IWGSC CSS Raw sequence reads in the SRA
- IWGSC CSS assemblies available at URGI and EBI
- IWGSC CSS assemblies & gene models integrated into EnsemblPlants

http://plants.ensembl.org/Triticum_aestivum

Perspectives on Sequencing Wheat

- > 1994 to 1998:
 - It will cost \$1billion to sequence maize
 - Arabidopsis can answer all questions, much more cheaply (Only \$110 million to sequence)
 - We only need ESTs for economically important crops
 - If you have full length cDNAs, you will have everything you want
- 2001 to 2003:
 - Okay, so Arabidopsis is not a cereal, rice is the answer
 - Since it is not possible, we will focus money on coming up with a new solution
 - \$500 million later... Eureka! We can focus on sequencing only the genes
- > 2003 to 2008:
 - \$30 million for sequencing maize
- > Today ...
 - Breeders and biologists alike agree having the genes are not enough
 - But, it's too late, you have your sequence

- > 1994 to 2004:
 - Wheat ESTs and a physical map of the Dgenome progenitor is all you need
- > 2004 to 2008:
 - It is not possible to sequence wheat & not possible to sort chromosomes
 - It will cost \$1billion to sequence wheat
 - We only need ESTs, a handful of cDNAs, and the D-genome sequence
- > 2008 to 2010
 - Okay, so you can do chromosome based physical maps.... But
 - Brachypodium sequence is the answer!
 - Whole genome based on other crops is only way to go, but we need to keep spending money on in-silico approaches to figure out how to do a whole genome approach
- > 2010 to today
 - You only need the genes
 - We can sequence the progenitors because we know all of them
 - 5X shotgun is good enough
 - Survey sequence is enough

Moving Towards the IWGSC Target

mapping (GZ): « virtual order »

completeness of information

Gold standard

Progress towards completion of Bread Wheat Projects

Our Sponsors

Dow AgroSciences

The miracles of science

Seeding the future

Acknowledgements

- IWGSC Leadership Team:
 - Rudi Appels, Murdoch University
 - Kellye Eversole, IWGSC
 - Catherine Feuillet, (INRA)-Bayer CropScience
 - Beat Keller, University of Zurich
 - Jane Rogers, IWGSC
- 63 members of the Coordinating Committee
- Physical mapping and sequencing project leaders in 19 countries, their team members, and collaborators

For More Information: www.wheatgenome.org

Kellye Eversole, Exec. Director (eversole@eversoleassociates.com) +1.202.352.4210

Jane Rogers, Deputy Exec. Director (janerogersh@gmail.com)

